IDEAS home Printed from
   My bibliography  Save this article

Causality between trading volume and returns: Evidence from quantile regressions


  • Gebka, Bartosz
  • Wohar, Mark E.


We analyse the causality between past trading volume and index returns in the Pacific Basin countries. OLS results indicate no causal link between volume and returns. However, the quantile regression method reveals strong nonlinear causality: positive for high return quantiles and negative for low ones. Causality in quantiles is not a statistical artefact of causality in periods of high volatility, i.e., causality does not occur in a clustered manner. Causality in quantiles helps to explain the lack of causality between volume and raw returns on the one hand and a strong causal relationship between volume and return volatility on the other.

Suggested Citation

  • Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
  • Handle: RePEc:eee:reveco:v:27:y:2013:i:c:p:144-159
    DOI: 10.1016/j.iref.2012.09.009

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, Oxford University Press, vol. 108(4), pages 905-939.
    3. Sentana, Enrique & Wadhwani, Sushil B, 1992. "Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data," Economic Journal, Royal Economic Society, vol. 102(411), pages 415-425, March.
    4. Anirut Pisedtasalasai & Abeyratna Gunasekarage, 2007. "Causal and Dynamic Relationships among Stock Returns, Return Volatility and Trading Volume: Evidence from Emerging markets in South-East Asia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(4), pages 277-297, December.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    7. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    8. Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
    9. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    10. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    11. Moosa, Imad A. & Silvapulle, Param, 2000. "The price-volume relationship in the crude oil futures market Some results based on linear and nonlinear causality testing," International Review of Economics & Finance, Elsevier, vol. 9(1), pages 11-30, February.
    12. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(01), pages 109-126, March.
    13. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    14. Kramer, Charles, 1999. "Noise trading, transaction costs, and the relationship of stock returns and trading volume," International Review of Economics & Finance, Elsevier, vol. 8(4), pages 343-362, November.
    15. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    16. Pantula, Sastry G & Gonzalez-Farias, Graciela & Fuller, Wayne A, 1994. "A Comparison of Unit-Root Test Criteria," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 449-459, October.
    17. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    19. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    20. Andreu Sansó & Vicent Aragó & Josep Lluís Carrion, 2003. "Testing for Changes in the Unconditional Variance of Financial Time Series," DEA Working Papers 5, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    21. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    22. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.
    23. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    24. Lee, Cheng F & Rui, Oliver M, 2000. "Does Trading Volume Contain Information to Predict Stock Returns? Evidence from China's Stock Markets," Review of Quantitative Finance and Accounting, Springer, vol. 14(4), pages 341-360, June.
    25. Jan Schneider, 2009. "A Rational Expectations Equilibrium with Informative Trading Volume," Journal of Finance, American Finance Association, vol. 64(6), pages 2783-2805, December.
    26. Rashid, Abdul, 2007. "Stock prices and trading volume: An assessment for linear and nonlinear Granger causality," Journal of Asian Economics, Elsevier, vol. 18(4), pages 595-612, August.
    27. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    28. Bartosz Gębka, 2012. "The Dynamic Relation Between Returns, Trading Volume, And Volatility: Lessons From Spillovers Between Asia And The United States," Bulletin of Economic Research, Wiley Blackwell, vol. 64(1), pages 65-90, January.
    29. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    30. Saatcioglu, Kemal & Starks, Laura T., 1998. "The stock price-volume relationship in emerging stock markets: the case of Latin America," International Journal of Forecasting, Elsevier, vol. 14(2), pages 215-225, June.
    31. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    32. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    33. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    34. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    35. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    36. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    37. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    38. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    39. Chen, Shiu-Sheng, 2012. "Revisiting the empirical linkages between stock returns and trading volume," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1781-1788.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ben Rejeb, Aymen & Arfaoui, Mongi, 2016. "Financial market interdependencies: A quantile regression analysis of volatility spillover," Research in International Business and Finance, Elsevier, vol. 36(C), pages 140-157.
    2. repec:eee:ecmode:v:64:y:2017:i:c:p:74-81 is not listed on IDEAS
    3. repec:eee:ememar:v:31:y:2017:i:c:p:32-46 is not listed on IDEAS
    4. Zhu, Huiming & Peng, Cheng & You, Wanhai, 2016. "Quantile behaviour of cointegration between silver and gold prices," Finance Research Letters, Elsevier, vol. 19(C), pages 119-125.
    5. Li, Haiqi & Zhong, Wanling & Park, Sung Y., 2016. "Generalized cross-spectral test for nonlinear Granger causality with applications to money–output and price–volume relations," Economic Modelling, Elsevier, vol. 52(PB), pages 661-671.
    6. Xu, Yongdeng & Taylor, Nick & Lu, Wenna, 2018. "Illiquidity and Volatility Spillover effects in Equity Markets during and after the Global Financial Crisis: an MEM approach," Cardiff Economics Working Papers E2018/6, Cardiff University, Cardiff Business School, Economics Section.
    7. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile analysis," Emerging Markets Review, Elsevier, vol. 31(C), pages 32-46.
    8. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    9. Ralf Brüggemann & Markus Glaser & Stefan Schaarschmidt & Sandra Stankiewicz, 2014. "The Stock Return - Trading Volume Relationship in European Countries: Evidence from Asymmetric Impulse Responses," Working Paper Series of the Department of Economics, University of Konstanz 2014-24, Department of Economics, University of Konstanz.
    10. Ciner, Cetin, 2015. "Time variation in systematic risk, returns and trading volume: Evidence from precious metals mining stocks," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 277-283.
    11. Pramod Kumar Naik & Rangan Gupta & Puja Padhi, 2018. "The Relationship Between Stock Market Volatility And Trading Volume: Evidence From South Africa," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(1), pages 99-114, January-M.
    12. Elina Pradkhan, 2016. "Information Content of Trading Activity in Precious Metals Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 421-456, May.
    13. repec:eee:ecmode:v:69:y:2018:i:c:p:220-236 is not listed on IDEAS
    14. repec:eee:ememar:v:32:y:2017:i:c:p:130-147 is not listed on IDEAS
    15. Batten, Jonathan A. & Ciner, Cetin & Kosedag, Arman & Lucey, Brian M., 2017. "Is the price of gold to gold mining stocks asymmetric?," Economic Modelling, Elsevier, vol. 60(C), pages 402-407.
    16. Mensi, Walid & Hammoudeh, Shawkat & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Do global factors impact BRICS stock markets? A quantile regression approach," Emerging Markets Review, Elsevier, vol. 19(C), pages 1-17.
    17. repec:eee:phsmap:v:482:y:2017:i:c:p:638-648 is not listed on IDEAS
    18. Rey Dang & Duc Khuong Nguyen, 2014. "Does Board Gender Diversity Make a Difference? New Evidence from Quantile Regression Analysis," Working Papers 2014-297, Department of Research, Ipag Business School.
    19. repec:eee:reveco:v:51:y:2017:i:c:p:487-509 is not listed on IDEAS
    20. repec:bla:manchs:v:85:y:2017:i:2:p:212-242 is not listed on IDEAS
    21. Yu-Yen Ku & Tze-Yu Yen, 2016. "Heterogeneous Effect of Financial Leverage on Corporate Performance: A Quantile Regression Analysis of Taiwanese Companies," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-33, September.

    More about this item


    Trading volume; Volume–return causality; Quantile regression;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:27:y:2013:i:c:p:144-159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.