IDEAS home Printed from https://ideas.repec.org/p/sin/wpaper/07-a006.html
   My bibliography  Save this paper

Causality in Quantiles and Dynamic Stock Return-Volume Relations

Author

Listed:

Abstract

This paper investigates the causal relations between stock return and volume based on quantile regressions. We first define Granger non-causality in all quantiles and propose testing non-causality by a sup-Wald test. Such a test is consistent against any deviation from non-causality in distribution, as opposed to the existing tests that check only noncausality in certain moment. This test is readily extended to test non-causality in different quantile ranges, and the testing results enable us to identify the quantile range for which causality is relevant. In the empirical studies of 3 major stock market indices, we find that, while the conventional test suggests no causality in mean, there are strong evidences that lagged volume Granger causes return in all but some middle quantiles. In particular, the causal effects have opposite signs at lower and upper quantiles and are stronger at more extreme quantiles. These relations form (symmetric) V shapes across quantiles. They also show that the dispersion of the return distribution increases with volume so that volume has a positive effect on return volatility. It is also shown that the quantile causal effects of lagged return on volume are mainly negative.

Suggested Citation

  • Chia-Chang Chuang & Chung-Ming Kuan & Hsin-yi Lin, 2007. "Causality in Quantiles and Dynamic Stock Return-Volume Relations," IEAS Working Paper : academic research 07-A006, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  • Handle: RePEc:sin:wpaper:07-a006
    as

    Download full text from publisher

    File URL: http://www.econ.sinica.edu.tw/upload/file/07-a006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eleanor Xu, Xiaoqing & Chen, Peter & Wu, Chunchi, 2006. "Time and dynamic volume-volatility relation," Journal of Banking & Finance, Elsevier, vol. 30(5), pages 1535-1558, May.
    2. Cheung, Yin-Wong & Ng, Lilian K., 1996. "A causality-in-variance test and its application to financial market prices," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 33-48.
    3. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    4. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, Oxford University Press, vol. 108(4), pages 905-939.
    5. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    6. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    7. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Silvapulle, Param & Choi, Jong-Seo, 1999. "Testing for linear and nonlinear granger causality in the stock price-volume relation: Korean evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 39(1), pages 59-76.
    10. Ciner, Cetin, 2002. "The Stock Price-Volume Linkage on the Toronto Stock Exchange: Before and after Automation," Review of Quantitative Finance and Accounting, Springer, vol. 19(4), pages 335-349, December.
    11. Jennings, Robert H. & Barry, Christopher B., 1983. "Information Dissemination and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 1-19, March.
    12. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    13. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    14. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    15. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.
    16. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    17. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(01), pages 109-126, March.
    18. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    19. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    20. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    21. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    22. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    23. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    24. Hutson, Elaine & Kearney, Colm & Lynch, Margaret, 2008. "Volume and skewness in international equity markets," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1255-1268, July.
    25. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    26. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    27. Jennings, Robert H & Starks, Laura T & Fellingham, John C, 1981. "An Equilibrium Model of Asset Trading with Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 36(1), pages 143-161, March.
    28. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    29. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    30. Moosa, Imad A. & Al-Loughani, Nabeel E., 1995. "Testing the price-volume relation in emerging Asian stock markets," Journal of Asian Economics, Elsevier, vol. 6(3), pages 407-422.
    31. Suominen, Matti, 2001. "Trading Volume and Information Revelation in Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(04), pages 545-565, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Granger non-causality in quantiles; quantile causal effect; quantile regression; return-volume relation; sup-Wald test;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sin:wpaper:07-a006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (HsiaoyunLiu). General contact details of provider: http://edirc.repec.org/data/sinictw.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.