IDEAS home Printed from https://ideas.repec.org/a/oup/rfinst/v15y2002i4p1005-1047.html
   My bibliography  Save this article

Dynamic Volume-Return Relation of Individual Stocks

Author

Listed:
  • Guillermo Llorente
  • Roni Michaely
  • Gideon Saar
  • Jiang Wang

Abstract

We examine the dynamic relation between return and volume of individual stocks. Using a simple model in which investors trade to share risk or speculate on private information, we show that returns generated by risk-sharing trades tend to reverse themselves, while returns generated by speculative trades tend to continue themselves. We test this theoretical prediction by analyzing the relation between daily volume and first-order return autocorrelation for individual stocks listed on the NYSE and AMEX. We find that the cross-sectional variation in the relation between volume and return autocorrelation is related to the extent of informed trading in a manner consistent with the theoretical prediction. Copyright 2002, Oxford University Press.

Suggested Citation

  • Guillermo Llorente & Roni Michaely & Gideon Saar & Jiang Wang, 2002. "Dynamic Volume-Return Relation of Individual Stocks," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1005-1047.
  • Handle: RePEc:oup:rfinst:v:15:y:2002:i:4:p:1005-1047
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    2. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    3. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    4. Jiang Wang, 1993. "A Model of Intertemporal Asset Prices Under Asymmetric Information," Review of Economic Studies, Oxford University Press, vol. 60(2), pages 249-282.
    5. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    6. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, Oxford University Press, vol. 108(4), pages 905-939.
    7. Blake LeBaron, "undated". "Persistence of the Dow Jones Index on Rising Volume," Working papers _006, University of Wisconsin - Madison.
    8. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    9. Ajinkya, Bipin B. & Jain, Prem C., 1989. "The behavior of daily stock market trading volume," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 331-359, November.
    10. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    11. Conrad, Jennifer & Kaul, Gautam, 1988. "Time-Variation in Expected Returns," The Journal of Business, University of Chicago Press, vol. 61(4), pages 409-425, October.
    12. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    13. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    14. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    15. Cready, William M. & Ramanan, Ramachandran, 1991. "The power of tests employing log-transformed volume in detecting abnormal trading," Journal of Accounting and Economics, Elsevier, vol. 14(2), pages 203-214, June.
    16. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    17. Linda Canina & Roni Michaely & Richard Thaler & Kent Womack, 1998. "Caveat Compounder: A Warning about Using the Daily CRSP Equal-Weighted Index to Compute Long-Run Excess Returns," Journal of Finance, American Finance Association, vol. 53(1), pages 403-416, February.
    18. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    19. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    20. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    21. Richardson, Gordon & Sefcik, Stephan E. & Thompson, Rex, 1986. "A test of dividend irrelevance using volume reactions to a change in dividend policy," Journal of Financial Economics, Elsevier, vol. 17(2), pages 313-333, December.
    22. Madhavan, Ananth & Sofianos, George, 1998. "An empirical analysis of NYSE specialist trading," Journal of Financial Economics, Elsevier, vol. 48(2), pages 189-210, May.
    23. Harrison Hong & Jiang Wang, 2000. "Trading and Returns under Periodic Market Closures," Journal of Finance, American Finance Association, vol. 55(1), pages 297-354, February.
    24. Lee, Charles M C & Mucklow, Belinda & Ready, Mark J, 1993. "Spreads, Depths, and the Impact of Earnings Information: An Intraday Analysis," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 345-374.
    25. Morse, Dale, 1980. "Asymmetrical Information in Securities Markets and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(5), pages 1129-1148, December.
    26. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    27. Charles M.C. Lee & Bhaskaran Swaminathan, 2000. "Price Momentum and Trading Volume," Journal of Finance, American Finance Association, vol. 55(5), pages 2017-2069, October.
    28. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    29. Jegadeesh N. & Titman S., 1995. "Short-Horizon Return Reversals and the Bid-Ask Spread," Journal of Financial Intermediation, Elsevier, vol. 4(2), pages 116-132, April.
    30. Brennan, Michael J. & Subrahmanyam, Avanidhar, 1995. "Investment analysis and price formation in securities markets," Journal of Financial Economics, Elsevier, vol. 38(3), pages 361-381, July.
    31. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    32. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    33. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    2. Gagnon, Louis & Karolyi, G. Andrew, 2009. "Information, Trading Volume, and International Stock Return Comovements: Evidence from Cross-Listed Stocks," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(4), pages 953-986, August.
    3. Jiang Wang, 2002. "Trading Volume and Asset Prices," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 299-359, November.
    4. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    5. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017.
    6. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, Oxford University Press, vol. 108(4), pages 905-939.
    7. repec:uts:finphd:34 is not listed on IDEAS
    8. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    9. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    10. Chuang, Wen-I & Lee, Bong-Soo, 2006. "An empirical evaluation of the overconfidence hypothesis," Journal of Banking & Finance, Elsevier, vol. 30(9), pages 2489-2515, September.
    11. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    12. Simon Gervais & Ron Kaniel & Dan H. Mingelgrin, 2001. "The High‐Volume Return Premium," Journal of Finance, American Finance Association, vol. 56(3), pages 877-919, June.
    13. Alessandro Beber & Cecilia Caglio, 2005. "Order Submission Strategies and Information: Empirical Evidence from the NYSE," FAME Research Paper Series rp146, International Center for Financial Asset Management and Engineering.
    14. Ranaldo, Angelo & Somogyi, Fabricius, 2021. "Asymmetric information risk in FX markets," Journal of Financial Economics, Elsevier, vol. 140(2), pages 391-411.
    15. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    16. Darolles, Serge & Fol, Gaëlle Le & Mero, Gulten, 2015. "Measuring the liquidity part of volume," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 92-105.
    17. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Kalev, Petko S. & Liu, Wai-Man & Pham, Peter K. & Jarnecic, Elvis, 2004. "Public information arrival and volatility of intraday stock returns," Journal of Banking & Finance, Elsevier, vol. 28(6), pages 1441-1467, June.
    20. Cetin Ciner, 2003. "Dynamic Linkages Between Trading Volume and Price Movements: Evidence for Small Firm Stocks," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 8(1), pages 87-102, Spring.
    21. Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:rfinst:v:15:y:2002:i:4:p:1005-1047. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sfsssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.