IDEAS home Printed from
   My bibliography  Save this paper

Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting


  • Francisco (F.) Blasques

    () (VU Amsterdam, The Netherlands; Tinbergen Institute, The Netherlands)

  • Paolo Gorgi

    () (VU Amsterdam, The Netherlands)

  • Siem Jan (S.J.) Koopman

    () (VU Amsterdam, The Netherlands; CREATES, Aarhus University, Denmark)


We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time- varying with an updating function similar to GARCH but with the squared-return replaced by the product of the volatility innovation and its lagged value. This local estimate of the first order autocorrelation of volatility innovations acts as an indicator of the importance of the squared-return for volatility updating. When recent volatility innovations have the same sign (positive autocorrelation), the current volatility estimate needs to adjust more quickly than in a period where recent volatility innovations have mixed signs (negative autocorrelation). The empirical relevance of the accelerated GARCH updating is illustrated by forecasting daily volatility in return series of all individual stocks present in the Standard & Poor’s 500 index. Major improvements are reported for those stock return series that exhibit high kurtosis. The local adjustment in weighting new observational information is generalised to score-driven time-varying parameter models of which GARCH is a special case. It is within this general framework that we provide the theoretical foundations of accelerated updating. We show that acceleration in updating is more optimal in terms of reducing Kullback-Leibler divergence and in comparison to fixed updating. The robustness of our proposed extension is highlighted in a simulation study within a misspecified modelling framework. The score-driven acceleration is also empirically illustrated with the forecasting of US inflation using a model with time-varying mean and variance; we report significant improvements in the forecasting accuracy at a yearly horizon.

Suggested Citation

  • Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20170059

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    4. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    8. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    13. Ullah, Aman, 2002. "Uses of entropy and divergence measures for evaluating econometric approximations and inference," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 313-326, March.
    14. Maasoumi, Esfandiar, 1986. "The Measurement and Decomposition of Multi-dimensional Inequality," Econometrica, Econometric Society, vol. 54(4), pages 991-997, July.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    GARCH models; Kullback-Leibler divergence; score-driven models; S&P 500 stocks; time-varying parameters; US inflation.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20170059. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.