IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A GMM procedure for combining volatility forecasts

  • Amendola, Alessandra
  • Storti, Giuseppe

A novel approach to the combination of volatility forecasts is discussed. The proposed procedure makes use of the generalized method of moments (GMM) for estimating the combination weights. The asymptotic properties of the GMM estimator are derived while its finite sample properties are assessed by means of a simulation study. The results of an application to a time series of daily returns on the S&P500 are presented.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V8V-4PV947N-4/1/cf396ec9fe990ddf28cdac87ce10af95
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 52 (2008)
Issue (Month): 6 (February)
Pages: 3047-3060

as
in new window

Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3047-3060
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
  2. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
  3. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  4. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  5. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
  6. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
  7. Francq, Christian & Zako an, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(05), pages 815-834, October.
  8. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
  9. Christian T. Brownlees & Giampiero Gallo, 2006. "Financial Econometric Analysis at Ultra–High Frequency: Data Handling Concerns," Econometrics Working Papers Archive wp2006_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  11. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  12. Haas Markus, 2007. "Volatility Components and Long Memory-Effects Revisited," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(2), pages 1-39, May.
  13. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  14. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  15. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  16. Jagannathan, Ravi & Skoulakis, Georgios & Wang, Zhenyu, 2002. "Generalized Method of Moments: Applications in Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 470-81, October.
  17. ANDERSEN, Torben G. & BOLLERSLEV, Tim & MEDDAHI, Nour, 2002. "Correcting the Errors : A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities," Cahiers de recherche 2002-21, Universite de Montreal, Departement de sciences economiques.
  18. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
  19. Valentina Corradi & Norman Swanson, 2003. "Some Recent Developments in Predictive Accuracy Testing With Nested Models and (Generic) Nonlinear Alternatives," Departmental Working Papers 200316, Rutgers University, Department of Economics.
  20. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  21. Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
  22. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(02), pages 323-337, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3047-3060. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.