IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i6p3047-3060.html
   My bibliography  Save this article

A GMM procedure for combining volatility forecasts

Author

Listed:
  • Amendola, Alessandra
  • Storti, Giuseppe

Abstract

A novel approach to the combination of volatility forecasts is discussed. The proposed procedure makes use of the generalized method of moments (GMM) for estimating the combination weights. The asymptotic properties of the GMM estimator are derived while its finite sample properties are assessed by means of a simulation study. The results of an application to a time series of daily returns on the S&P500 are presented.

Suggested Citation

  • Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3047-3060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00385-4
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    3. Jagannathan, Ravi & Skoulakis, Georgios & Wang, Zhenyu, 2002. "Generalized Method of Moments: Applications in Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 470-481, October.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    5. Haas Markus, 2007. "Volatility Components and Long Memory-Effects Revisited," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(2), pages 1-39, May.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    7. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    8. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    15. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(02), pages 323-337, April.
    16. Hansen, Bruce E., 1991. "GARCH(1, 1) processes are near epoch dependent," Economics Letters, Elsevier, vol. 36(2), pages 181-186, June.
    17. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    18. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    19. Rabemananjara, R & Zakoian, J M, 1993. "Threshold Arch Models and Asymmetries in Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 31-49, Jan.-Marc.
    20. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    21. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
    22. Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
    23. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    24. Francq, Christian & Zako an, Jean-Michel, 2006. "Mixing Properties Of A General Class Of Garch(1,1) Models Without Moment Assumptions On The Observed Process," Econometric Theory, Cambridge University Press, vol. 22(05), pages 815-834, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foschi, Paolo & Pascucci, Andrea, 2009. "Calibration of a path-dependent volatility model: Empirical tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2219-2235, April.
    2. Alessandra Amendola & Giuseppe Storti, 2009. "Combination of multivariate volatility forecasts," SFB 649 Discussion Papers SFB649DP2009-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
    4. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
    5. repec:eee:glofin:v:36:y:2018:i:c:p:41-61 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:3047-3060. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.