IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i3p1803-1821.html
   My bibliography  Save this article

Minimum distance estimation of GARCH(1,1) models

Author

Listed:
  • Storti, G.

Abstract

No abstract is available for this item.

Suggested Citation

  • Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:3:p:1803-1821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00313-0
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    5. Michael P. Clements & Nick Taylor, 2003. "Evaluating interval forecasts of high-frequency financial data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 445-456.
    6. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    7. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    8. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    9. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    10. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Amendola & Giuseppe Storti, 2009. "Combination of multivariate volatility forecasts," SFB 649 Discussion Papers SFB649DP2009-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. PREMINGER, Arie & STORTI, Giuseppe, 2006. "A GARCH (1,1) estimator with (almost) no moment conditions on the error term," CORE Discussion Papers 2006068, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Hafner, Christian M. & Preminger, Arie, 2009. "Asymptotic Theory For A Factor Garch Model," Econometric Theory, Cambridge University Press, vol. 25(02), pages 336-363, April.
    4. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    5. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    6. PREMINGER, Arie & HAFNER, Christian, 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," CORE Discussion Papers 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Oana GHERGHINESCU & Paul RINDERU, 2011. "Econometric Models for Analysing the Structural Funds Absorption at Regional Level - Case Study SW Region," Timisoara Journal of Economics, West University of Timisoara, Romania, Faculty of Economics and Business Administration, vol. 4(3(15)), pages 161-174.
    8. Arie Preminger & Christian M. Hafner, 2006. "Deciding Between Garch And Stochastic Volatility Via Strong Decision Rules," Working Papers 0603, Ben-Gurion University of the Negev, Department of Economics.
    9. Arie Preminger & Christian M. Hafner, 2006. "Asymptotic Theory For A Factor Garch Model," Working Papers 0608, Ben-Gurion University of the Negev, Department of Economics.
    10. Sangyeol Lee & Junmo Song, 2009. "Minimum density power divergence estimator for GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 316-341, August.
    11. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:3:p:1803-1821. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.