IDEAS home Printed from https://ideas.repec.org/p/lvl/crrecr/1814.html
   My bibliography  Save this paper

Forecasting with Many Predictors: How Useful are National and International Confidence Data?

Author

Listed:
  • Kevin Moran
  • Simplice Aimé Nono
  • Imad Rherrad

Abstract

This paper assesses the contribution of Canadian and International (US) confidence data, drawn from consumer and business sentiment surveys, for forecasting Canadian GDP growth. The targeting approaches of Bai and Ng (2008) and Bai and Ng (2009) are employed to extract promising predictors from large databases each containing between several dozen and several hundred time series. The databases are categorised between those containing macroeconomic (Canadian and US) and confidence (Canadian and US) data, allowing us to assess the specific value added of international and confidence data. We find that forecasting ability is consistently improved by considering information from national confidence data; by contrast, their US counterparts appear to be helpful only when combined with national time-series. Overall, most relevant gains in forecasting performance are observed for short-term (up to threequarters-ahead) horizons, perhaps reflecting the timing advantage in the releases of sentiment data.

Suggested Citation

  • Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
  • Handle: RePEc:lvl:crrecr:1814
    as

    Download full text from publisher

    File URL: http://www.crrep.ca/sites/crrep.ca/files/fichier_publications/crrep-2018-14.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    2. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    3. Teresa Santero & Niels Westerlund, 1996. "Confidence Indicators and Their Relationship to Changes in Economic Activity," OECD Economics Department Working Papers 170, OECD Publishing.
    4. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    7. Karl Taylor & Robert McNabb, 2007. "Business Cycles and the Role of Confidence: Evidence for Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 185-208, April.
    8. Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," EconomiX Working Papers 2017-5, University of Paris Nanterre, EconomiX.
    9. Giuseppe Parigi & Roberto Golinelli & Giorgio Bodo, 2000. "Forecasting industrial production in the Euro area," Empirical Economics, Springer, vol. 25(4), pages 541-561.
    10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    11. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    12. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    13. Lahiri, Kajal & Monokroussos, George, 2013. "Nowcasting US GDP: The role of ISM business surveys," International Journal of Forecasting, Elsevier, vol. 29(4), pages 644-658.
    14. repec:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-017-1254-1 is not listed on IDEAS
    15. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    16. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    17. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Martinsen, Kjetil & Ravazzolo, Francesco & Wulfsberg, Fredrik, 2014. "Forecasting macroeconomic variables using disaggregate survey data," International Journal of Forecasting, Elsevier, vol. 30(1), pages 65-77.
    20. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    21. André Binette & Jae Chang, 2013. "CSI: A Model for Tracking Short-Term Growth in Canadian Real GDP," Bank of Canada Review, Bank of Canada, vol. 2013(Summer), pages 3-12.
    22. Tony Chernis & Rodrigo Sekkel, 2017. "A dynamic factor model for nowcasting Canadian GDP growth," Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
    23. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    24. Umar Faruqui & Paul Gilbert & Wendy Kei, 2008. "The Bank of Canada's Senior Loan Officer Survey," Bank of Canada Review, Bank of Canada, vol. 2008(Autumn), pages 57-64.
    25. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    26. Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2018. "A Large Canadian Database for Macroeconomic Analysis," CIRANO Working Papers 2018s-25, CIRANO.
    27. Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
    28. Lise Pichette & Marie-Noëlle Robitaille, 2017. "Assessing the Business Outlook Survey Indicator Using Real-Time Data," Discussion Papers 17-5, Bank of Canada.
    29. Zhihong Chen & Azhar Iqbal & Huiwen Lai, 2011. "Forecasting the probability of US recessions: a Probit and dynamic factor modelling approach," Canadian Journal of Economics, Canadian Economics Association, vol. 44(2), pages 651-672, May.
    30. Kopoin, Alexandre & Moran, Kevin & Paré, Jean-Pierre, 2013. "Forecasting regional GDP with factor models: How useful are national and international data?," Economics Letters, Elsevier, vol. 121(2), pages 267-270.
    31. repec:eee:beexfi:v:5:y:2015:i:c:p:46-59 is not listed on IDEAS
    32. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:crrecr:1814. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: http://edirc.repec.org/data/crrepca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.