IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v89y2002i3p603-616.html
   My bibliography  Save this item

A simple and efficient simulation smoother for state space time series analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Florian Heiss, 2008. "Sequential numerical integration in nonlinear state space models for microeconometric panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 373-389.
  2. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
  3. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
  4. Marta Bañbura & Danilo Leiva-León & Jan-Oliver Menz, 2021. "Do inflation expectations improve model-based inflation Forecasts?," Working Papers 2138, Banco de España.
  5. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017. "Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
  6. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
  7. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
  8. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
  9. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
  10. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
  11. Michael D Bauer & Carolin E Pflueger & Adi Sunderam, 2024. "Perceptions About Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(4), pages 2227-2278.
  12. Jaeho Kim & Sora Chon, 2020. "Why are Bayesian trend-cycle decompositions of US real GDP so different?," Empirical Economics, Springer, vol. 58(3), pages 1339-1354, March.
  13. Jochmann, Markus & Koop, Gary & Potter, Simon M., 2010. "Modeling the dynamics of inflation compensation," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 157-167, January.
  14. Wang, Renhe & Wang, Tong & Qian, Zhiyong & Hu, Shulan, 2023. "A Bayesian estimation approach of random switching exponential smoothing with application to credit forecast," Finance Research Letters, Elsevier, vol. 58(PC).
  15. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
  16. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
  17. Max Bruche, 2006. "Estimating Structural Models of Corporate Bond Prices," Working Papers wp2006_0610, CEMFI.
  18. Antonello D’Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2016. "Nowcasting Business Cycles: A Bayesian Approach to Dynamic Heterogeneous Factor Models," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 569-594, Emerald Group Publishing Limited.
  19. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "Time-varying effect of oil market shocks on the stock market," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 150-163.
  20. Thomas M. Trimbur, 2006. "Detrending economic time series: a Bayesian generalization of the Hodrick-Prescott filter," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 247-273.
  21. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
  22. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
  23. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
  24. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
  25. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
  26. Eraslan, Sercan & Reif, Magnus, 2023. "A latent weekly GDP indicator for Germany," Technical Papers 08/2023, Deutsche Bundesbank.
  27. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
  28. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
  29. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
  30. Hauber, Philipp, 2021. "How useful is external information from professional forecasters? Conditional forecasts in large factor models," EconStor Preprints 251469, ZBW - Leibniz Information Centre for Economics.
  31. G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
  32. Yu-Fan Huang & Sui Luo, 2018. "Potential output and inflation dynamics after the Great Recession," Empirical Economics, Springer, vol. 55(2), pages 495-517, September.
  33. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
  34. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic factor, leverage and realized covariances in multivariate stochastic volatility," Papers 2011.06909, arXiv.org, revised Sep 2021.
  35. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
  36. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
  37. Eyal Argov & Alon Binyamini & Eliezer Borenstein & Irit Rozenshtrom, 2015. "Model-Based Ex Post Evaluation of Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 219-254, December.
  38. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
  39. Shang, Yuhuang & Liu, Lulu, 2017. "An extension of stochastic volatility model with mixed frequency information," Economics Letters, Elsevier, vol. 155(C), pages 144-148.
  40. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
  41. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
  42. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
  43. Brand, Claus & Goy, Gavin W & Lemke, Wolfgang, 2020. "Natural rate chimera and bond pricing reality," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224546, Verein für Socialpolitik / German Economic Association.
  44. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
  45. Michael D. Bauer & Glenn D. Rudebusch, 2023. "The Rising Cost of Climate Change: Evidence from the Bond Market," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1255-1270, September.
  46. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
  47. Drew D. Creal & Jing Cynthia Wu, 2020. "Bond risk premia in consumption‐based models," Quantitative Economics, Econometric Society, vol. 11(4), pages 1461-1484, November.
  48. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
  49. Soudeep Deb & Rishideep Roy & Shubhabrata Das, 2024. "Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1814-1834, September.
  50. Yuta Kurose & Yasuhiro Omori, "undated". "Multiple-lock Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1075, CIRJE, Faculty of Economics, University of Tokyo.
  51. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
  52. Marco Del Negro & Domenico Giannone & Marc P. Giannoni & Andrea Tambalotti, 2017. "Safety, Liquidity, and the Natural Rate of Interest," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 235-316.
  53. Hanna Armelius & Martin Solberger & Erik Spånberg & Pär Österholm, 2024. "The evolution of the natural rate of interest: evidence from the Scandinavian countries," Empirical Economics, Springer, vol. 66(4), pages 1633-1659, April.
  54. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
  55. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 03-2008, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  56. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
  57. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
  58. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
  59. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  60. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
  61. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
  62. Hauber, Philipp & Schumacher, Christian, 2021. "Precision-based sampling with missing observations: A factor model application," Discussion Papers 11/2021, Deutsche Bundesbank.
  63. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
  64. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36, Federal Reserve Bank of Cleveland.
  65. Ascari, Guido & Fosso, Luca, 2024. "The international dimension of trend inflation," Journal of International Economics, Elsevier, vol. 148(C).
  66. Jonas E. Arias & Juan F. Rubio-Ramirez & Minchul Shin & Daniel F. Waggoner, 2024. "Inference Based on Time-Varying SVARs Identified with Sign Restrictions," Working Papers 24-05, Federal Reserve Bank of Philadelphia.
  67. Belongia, Michael T. & Ireland, Peter N., 2022. "A reconsideration of money growth rules," Journal of Economic Dynamics and Control, Elsevier, vol. 135(C).
  68. Carlos Montes-Galdón & Eva Ortega, 2022. "Skewed SVARs: Tracking the Structural Sources of Macroeconomic Tail Risks," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 177-210, Emerald Group Publishing Limited.
  69. Francisco Barillas & Kristoffer Nimark, 2012. "Speculation, risk premia and expectations in the yield curve," Economics Working Papers 1337, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2013.
  70. Hasenzagl, Thomas & Pellegrino, Filippo & Reichlin, Lucrezia & Ricco, Giovanni, 2022. "Monitoring the Economy in Real Time: Trends and Gaps in Real Activity and Prices," CEPR Discussion Papers 17111, C.E.P.R. Discussion Papers.
  71. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
  72. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
  73. McCAUSLAND, William J. & MILLER, Shirley & PELLETIER, Denis, 2007. "A New Approach to Drawing States in State Space Models," Cahiers de recherche 07-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  74. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
  75. Xianguo HUANG & Roberto LEON-GONZALEZ & Somrasri YUPHO, 2013. "Financial Integration from a Time-Varying Cointegration Perspective," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(12), pages 1473-1487.
  76. Borus Jungbacker & Siem Jan Koopman, 2005. "On Importance Sampling for State Space Models," Tinbergen Institute Discussion Papers 05-117/4, Tinbergen Institute.
  77. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
  78. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
  79. Matteo Barigozzi & Claudio Lissona & Matteo Luciani, 2024. "Measuring the Euro Area Output Gap," Finance and Economics Discussion Series 2024-099, Board of Governors of the Federal Reserve System (U.S.).
  80. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
  81. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
  82. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
  83. Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized Neural Networks for Agent-Based Model Forecasting," Bank of Russia Working Paper Series wps115, Bank of Russia.
  84. Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
  85. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
  86. Guido Ascari & Luca Fosso, 2021. "The Inflation Rate Disconnect Puzzle: On the International Component of Trend Inflation and the Flattening of the Phillips Curve," Discussion Papers 2113, Centre for Macroeconomics (CFM).
  87. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
  88. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
  89. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
  90. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
  91. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
  92. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
  93. Manuel Gonzalez-Astudillo & Jean-Philippe Laforte, 2020. "Estimates of r* Consistent with a Supply-Side Structure and a Monetary Policy Rule for the U.S. Economy," Finance and Economics Discussion Series 2020-085, Board of Governors of the Federal Reserve System (U.S.).
  94. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
  95. Siem Jan Koopman & Charles S. Bos, 2002. "Time Series Models with a Common Stochastic Variance for Analysing Economic Time Series," Tinbergen Institute Discussion Papers 02-113/4, Tinbergen Institute.
  96. Alicia N. Rambaldi & D.S. Prasada Rao & K. Renuka Ganegodage, 2009. "Spatial Autocorrelation and Extrapolation of Purchasing Power Parities. Modelling and Sensitivity Analysis," CEPA Working Papers Series WP012009, School of Economics, University of Queensland, Australia.
  97. Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "On the Evolution of Monetary Policy," Working Paper series 24_08, Rimini Centre for Economic Analysis.
  98. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.