IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v35y2016i4p659-687.html
   My bibliography  Save this article

Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models

Author

Listed:
  • G. Mesters
  • S. J. Koopman
  • M. Ooms

Abstract

An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an autoregression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study, we analyze ten daily log-return series from the S&P 500 stock index by univariate and multivariate long-memory stochastic volatility models. We compare the in-sample and out-of-sample performance of a number of models within the class of long-memory stochastic volatility models.

Suggested Citation

  • G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
  • Handle: RePEc:taf:emetrv:v:35:y:2016:i:4:p:659-687
    DOI: 10.1080/07474938.2015.1031014
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2015.1031014
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2015.1031014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    3. So, Mike K.P. & Kwok, Susanna W.Y., 2006. "A multivariate long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 450-464.
    4. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    5. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    6. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    7. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    8. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    9. Asai, Manabu & McAleer, Michael & Medeiros, Marcelo C., 2012. "Modelling and forecasting noisy realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 217-230, January.
    10. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    11. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    12. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    13. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    14. Doornik, Jurgen A. & Ooms, Marius, 2003. "Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 333-348, March.
    15. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    16. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    17. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    18. N. H. Chan & A. E. Brockwell, 2006. "Long-memory dynamic Tobit models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 351-367.
    19. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    20. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    22. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    23. Borus Jungbacker & Siem Jan Koopman, 2007. "Monte Carlo Estimation for Nonlinear Non-Gaussian State Space Models," Biometrika, Biometrika Trust, vol. 94(4), pages 827-839.
    24. Rebecca J. Sela & Clifford M. Hurvich, 2009. "Computationally efficient methods for two multivariate fractionally integrated models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 631-651, November.
    25. Wright, Jonathan H., 1999. "A new estimator of the fractionally integrated stochastic volatility model," Economics Letters, Elsevier, vol. 63(3), pages 295-303, June.
    26. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    27. Esfandiar Maasoumi & Michael McAleer, 2006. "Multivariate Stochastic Volatility: An Overview," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 139-144.
    28. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    29. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    30. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    31. Mandelbrot, Benoit, 1969. "Long-Run Linearity, Locally Gaussian Process, H-Spectra and Infinite Variances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 82-111, February.
    32. A. E. Brockwell, 2007. "Likelihood‐based Analysis of a Class of Generalized Long‐Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(3), pages 386-407, May.
    33. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonello D’Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2016. "Nowcasting Business Cycles: A Bayesian Approach to Dynamic Heterogeneous Factor Models," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 569-594, Emerald Group Publishing Limited.
    2. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    3. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    4. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    5. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    6. Blasques, Francisco & Hoogerkamp, Meindert Heres & Koopman, Siem Jan & van de Werve, Ilka, 2021. "Dynamic factor models with clustered loadings: Forecasting education flows using unemployment data," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1426-1441.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    2. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    3. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    4. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    5. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    6. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    7. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    8. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    9. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    10. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
    11. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    12. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    13. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CIRJE F-Series CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
    14. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    15. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    16. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    18. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    19. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    20. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:4:p:659-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.