IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v168y2018icp42-45.html

A note on low-dimensional Kalman smoothers for systems with lagged states in the measurement equation

Author

Listed:
  • Kurz, Malte S.

Abstract

In this paper we derive a modified Kalman smoother for state space systems with lagged states in the measurement equation. This modified Kalman smoother minimizes the mean squared error (MSE). Computationally efficient algorithms that can be used to implement it in practice are discussed. We also show that the conjecture in Nimark (2015) that the output of his modified Kalman filter for this type of systems can be plugged into the standard Kalman smoother is in general not correct. The competing smoothers are compared with regards to the MSE.

Suggested Citation

  • Kurz, Malte S., 2018. "A note on low-dimensional Kalman smoothers for systems with lagged states in the measurement equation," Economics Letters, Elsevier, vol. 168(C), pages 42-45.
  • Handle: RePEc:eee:ecolet:v:168:y:2018:i:c:p:42-45
    DOI: 10.1016/j.econlet.2018.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176518301289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2018.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    2. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    3. Nimark, Kristoffer P., 2015. "A low dimensional Kalman filter for systems with lagged states in the measurement equation," Economics Letters, Elsevier, vol. 127(C), pages 10-13.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    2. Hauber, Philipp & Schumacher, Christian & Zhang, Jiachun, 2019. "A flexible state-space model with lagged states and lagged dependent variables: Simulation smoothing," Discussion Papers 15/2019, Deutsche Bundesbank.
    3. Adrian Pagan & Tim Robinson, 2020. "Too many shocks spoil the interpretation," CAMA Working Papers 2020-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hauber, Philipp & Schumacher, Christian & Zhang, Jiachun, 2019. "A flexible state-space model with lagged states and lagged dependent variables: Simulation smoothing," Discussion Papers 15/2019, Deutsche Bundesbank.
    2. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    3. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    4. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    5. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    6. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    8. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    9. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    10. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    11. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    12. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    13. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    14. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    15. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    16. Jarociński, Marek, 2015. "A note on implementing the Durbin and Koopman simulation smoother," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 1-3.
    17. Martín Almuzara & Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "GDP Solera: The Ideal Vintage Mix," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 984-997, July.
    18. Jan P. A. M. Jacobs & Samad Sarferaz & Jan-Egbert Sturm & Simon van Norden, 2022. "Can GDP Measurement Be Further Improved? Data Revision and Reconciliation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 423-431, January.
    19. Sebastian Ankargren & Måns Unosson & Yukai Yang, 2018. "A mixed-frequency Bayesian vector autoregression with a steady-state prior," CREATES Research Papers 2018-32, Department of Economics and Business Economics, Aarhus University.
    20. repec:rim:rimwps:26-08 is not listed on IDEAS
    21. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:168:y:2018:i:c:p:42-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.