IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2020-28.html
   My bibliography  Save this paper

Too many shocks spoil the interpretation

Author

Listed:
  • Adrian Pagan
  • Tim Robinson

Abstract

We show that when a model has more shocks than observed variables the estimated filtered and smoothed shocks will be correlated. This is despite no correlation being present in the data generating process. Additionally the estimated shock innovations may be autocorrelated. These correlations limit the relevance of impulse responses, which assume uncorrelated shocks, for interpreting the data. Excess shocks occur frequently, e.g. in Unobserved-Component (UC) models, filters, including Hodrick- Prescott (1997), and some Dynamic Stochastic General Equilibrium (DSGE) models. Using several UC models and an estimated DSGE model, Ireland (2011), we demonstrate that sizable correlations among the estimated shocks can result.

Suggested Citation

  • Adrian Pagan & Tim Robinson, 2020. "Too many shocks spoil the interpretation," CAMA Working Papers 2020-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2020-28
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2020-03/28_2020_pagan_robinson_0.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabio Canova & Filippo Ferroni & Christian Matthes, 2014. "Choosing The Variables To Estimate Singular Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1099-1117, November.
    2. Anderson, Heather M. & Low, Chin Nam & Snyder, Ralph, 2006. "Single source of error state space approach to the Beveridge Nelson decomposition," Economics Letters, Elsevier, vol. 91(1), pages 104-109, April.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    4. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    5. Peter N. Ireland, 2011. "A New Keynesian Perspective on the Great Recession," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 31-54, February.
    6. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    7. Morley, James C., 2002. "A state-space approach to calculating the Beveridge-Nelson decomposition," Economics Letters, Elsevier, vol. 75(1), pages 123-127, March.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Fabio Canova & Filippo Ferroni, 2022. "Mind the Gap! Stylized Dynamic Facts and Structural Models," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 104-135, October.
    10. Xianglong Liu & Adrian R. Pagan & Tim Robinson, 2018. "Critically Assessing Estimated DSGE Models: A Case Study of a Multi‐sector Model," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 349-371, December.
    11. Kurz, Malte S., 2018. "A note on low-dimensional Kalman smoothers for systems with lagged states in the measurement equation," Economics Letters, Elsevier, vol. 168(C), pages 42-45.
    12. Nimark, Kristoffer P., 2015. "A low dimensional Kalman filter for systems with lagged states in the measurement equation," Economics Letters, Elsevier, vol. 127(C), pages 10-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgiadis, Georgios & Jančoková, Martina, 2020. "Financial globalisation, monetary policy spillovers and macro-modelling: Tales from 1001 shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 121(C).
    2. Ilabaca, Francisco & Milani, Fabio, 2021. "Heterogeneous expectations, indeterminacy, and postwar US business cycles," Journal of Macroeconomics, Elsevier, vol. 68(C).
    3. Lütkepohl, Helmut, 2020. "Structural vector autoregressive models with more shocks than variables identified via heteroskedasticity," Economics Letters, Elsevier, vol. 195(C).
    4. Helmut Lütkepohl, 2020. "Structural Vector Autoregressive Models with More Shocks than Variables Identified via Heteroskedasticity," Discussion Papers of DIW Berlin 1871, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagan, Adrian & Robinson, Tim, 2022. "Excess shocks can limit the economic interpretation," European Economic Review, Elsevier, vol. 145(C).
    2. Adrian Pagan & Tim Robinson, 2019. "Implications of Partial Information for Applied Macroeconomic Modelling," Melbourne Institute Working Paper Series wp2019n12, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    3. Adrian Pagan & Michael Wickens, 2019. "Checking if the straitjacket fits," CAMA Working Papers 2019-81, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. William Gatt, 2022. "MEDSEA-FIN: an estimated DSGE model with housing and financial frictions for Malta," CBM Working Papers WP/05/2022, Central Bank of Malta.
    5. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    7. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    8. de Silva, Ashton & Hyndman, Rob J. & Snyder, Ralph, 2009. "A multivariate innovations state space Beveridge-Nelson decomposition," Economic Modelling, Elsevier, vol. 26(5), pages 1067-1074, September.
    9. Oh, Kum Hwa & Zivot, Eric & Creal, Drew, 2008. "The relationship between the Beveridge-Nelson decomposition and other permanent-transitory decompositions that are popular in economics," Journal of Econometrics, Elsevier, vol. 146(2), pages 207-219, October.
    10. Morris, Stephen D., 2017. "DSGE pileups," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 56-86.
    11. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers 21/13, Institute for Fiscal Studies.
    12. Kum Hwa Oh & Eric Zivot & Drew Creal, 2006. "The Relationship between the Beveridge-Nelson Decomposition andUnobserved Component Models with Correlated Shocks," Working Papers UWEC-2006-16-FC, University of Washington, Department of Economics.
    13. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    14. M. Dungey & J. P. A. M. Jacobs & J. Tian & S. van Norden, 2013. "On the correspondence between data revision and trend-cycle decomposition," Applied Economics Letters, Taylor & Francis Journals, vol. 20(4), pages 316-319, March.
    15. Massimo Franchi, 2013. "Comment on: Ravenna, F., 2007. Vector autoregressions and reduced form representations of DSGE models. Journal of Monetary Economics 54, 2048-2064," DSS Empirical Economics and Econometrics Working Papers Series 2013/2, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    16. Carlstrom, Charles T. & Fuerst, Timothy S. & Paustian, Matthias, 2009. "Monetary policy shocks, Choleski identification, and DNK models," Journal of Monetary Economics, Elsevier, vol. 56(7), pages 1014-1021, October.
    17. Hollander, Hylton & Liu, Guangling, 2016. "Credit spread variability in the U.S. business cycle: The Great Moderation versus the Great Recession," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 37-52.
    18. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    19. Robert Dixon & G.C. Lim, 2004. "Underlying Inflation in Australia: Are the Existing Measures Satisfactory?," The Economic Record, The Economic Society of Australia, vol. 80(251), pages 373-386, December.
    20. Cantelmo, Alessandro & Melina, Giovanni, 2018. "Monetary policy and the relative price of durable goods," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 1-48.

    More about this item

    Keywords

    Partial Information; Structural Shocks; Kalman Filter; Measurement Error; DSGE;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2020-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.