IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20100004.html
   My bibliography  Save this paper

Macro, Industry and Frailty Effects in Defaults: The 2008 Credit Crisis in Perspective

Author

Listed:
  • Siem Jan Koopman

    (VU University Amsterdam)

  • Andre Lucas

    (VU University Amsterdam)

  • Bernd Schwaab

    (VU University Amsterdam)

Abstract

We determine the magnitude and nature of systematic default risk using 1971{2009) default data from Moody's. We disentangle systematic risk factors due to business cycle effects, common default dynamics (frailty), and industry-specific dynamics (including contagion). To quantify the contribution of each of these factors to default rate volatility we introduce a new and flexible model class for factor structures on non-Gaussian (defaults) and Gaussian (macro factors) data simultaneously. We find that all three types of risk factors (macro, frailty, industry/contagion) are important for default risk. The systematic risk factors account for roughly one third of observed default risk variation. Half of this is captured by macro and financial market factors. The remainder is captured by frailty and industry effects (in roughly equal proportions). The frailty components are particularly relevant in times of stress. Models based only on macro variables may both under-estimate and over-estimate default activity during such times. This indicates that frailty factors do not simply capture missed non-linear responses of defaults to business cycle dynamics. We also find significant differences in the impact of crises on defaults at the sectoral level, implying frailty as well as contagion may play a role in systematic default clustering. Finally, we show that the contribution of frailty and industry factors on top of macro factors is economicallysignificant for assessing portfolio risk.

Suggested Citation

  • Siem Jan Koopman & Andre Lucas & Bernd Schwaab, 2010. "Macro, Industry and Frailty Effects in Defaults: The 2008 Credit Crisis in Perspective," Tinbergen Institute Discussion Papers 10-004/2, Tinbergen Institute, revised 24 Aug 2010.
  • Handle: RePEc:tin:wpaper:20100004
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/10004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    3. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    5. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xisong Jin & Francisco Nadal De Simone, 2012. "An Early-warning and Dynamic Forecasting Framework of Default Probabilities for the Macroprudential Policy Indicators Arsenal," BCL working papers 75, Central Bank of Luxembourg.
    2. Jin, Xisong & Nadal De Simone, Francisco de A., 2014. "Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach," Journal of Financial Stability, Elsevier, vol. 14(C), pages 81-101.
    3. Xisong Jin & Francisco Nadal De Simone, 2017. "Systemic Financial Sector and Sovereign Risks," BCL working papers 109, Central Bank of Luxembourg.
    4. Xisong Jin & Francisco Nadal De Simone, 2016. "Tracking Changes in the Intensity of Financial Sector's Systemic Risk," BCL working papers 102, Central Bank of Luxembourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    2. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    3. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
    4. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
    5. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2008. "Forecasting Cross-Sections of Frailty-Correlated Default," Tinbergen Institute Discussion Papers 08-029/4, Tinbergen Institute.
    6. Bernd Schwaab & Andre Lucas & Siem Jan Koopman, 2010. "Systemic Risk Diagnostics," Tinbergen Institute Discussion Papers 10-104/2/DSF 2, Tinbergen Institute, revised 29 Nov 2010.
    7. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2014. "Nowcasting and forecasting global financial sector stress and credit market dislocation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 741-758.
    8. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    9. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    10. Harjoat S. Bhamra & Christian Dorion & Alexandre Jeanneret & Michael Weber, 2018. "Low Inflation: High Default Risk AND High Equity Valuations," NBER Working Papers 25317, National Bureau of Economic Research, Inc.
    11. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    12. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    13. Pu, Xiaoling & Zhao, Xinlei, 2012. "Correlation in credit risk changes," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1093-1106.
    14. Lando, David & Nielsen, Mads Stenbo, 2010. "Correlation in corporate defaults: Contagion or conditional independence?," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 355-372, July.
    15. Kay Giesecke & Baeho Kim, 2011. "Systemic Risk: What Defaults Are Telling Us," Management Science, INFORMS, vol. 57(8), pages 1387-1405, August.
    16. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    17. Anand Deo & Sandeep Juneja, 2019. "Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator," Papers 1912.12611, arXiv.org.
    18. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    19. Christian Koziol & Philipp Koziol & Thomas Schön, 2015. "Do correlated defaults matter for CDS premia? An empirical analysis," Review of Derivatives Research, Springer, vol. 18(3), pages 191-224, October.
    20. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.

    More about this item

    Keywords

    systematic default risk; credit portfolio models; mixed-measurement dynamic factor model; frailty-correlated defaults; state space methods; dynamic credit risk management;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20100004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.