IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/11961.html
   My bibliography  Save this paper

Common Failings: How Corporate Defaults are Correlated

Author

Listed:
  • Sanjiv Das
  • Darrell Duffie
  • Nikunj Kapadia
  • Leandro Saita

Abstract

We develop, and apply to data on U.S. corporations from 1979-2004, tests of the standard doubly-stochastic assumption under which firms'default times are correlated only as implied by the correlation of factors determining their default intensities. This assumption is violated in the presence of contagion or "frailty" (unobservable explanatory variables that are correlated across firms). Our tests do not depend on the time-series properties of default intensities. The data do not support the joint hypothesis of well specified default intensities and the doubly-stochastic assumption. There is also some evidence of default clustering in excess of that implied by the doubly-stochastic model with the given intensities.

Suggested Citation

  • Sanjiv Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2006. "Common Failings: How Corporate Defaults are Correlated," NBER Working Papers 11961, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:11961
    Note: AP CF
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w11961.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    3. Robert A. Jarrow & David Lando & Fan Yu, 2008. "Default Risk And Diversification: Theory And Empirical Implications," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 19, pages 455-480, World Scientific Publishing Co. Pte. Ltd..
    4. Linda Allen & Anthony Saunders, 2003. "A survey of cyclical effects in credit risk measurement model," BIS Working Papers 126, Bank for International Settlements.
    5. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    6. Cynthia G. McDonald & Linda M. Van De Gucht, 1999. "High-Yield Bond Default And Call Risks," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 409-419, August.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    9. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    10. Anil K. Kashyap & Jeremy C. Stein, 2004. "Cyclical implications of the Basel II capital standards," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 28(Q I), pages 18-31.
    11. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    12. Zhou, Chunsheng, 2001. "An Analysis of Default Correlations and Multiple Defaults," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 555-576.
    13. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    14. Lo, Andrew W., 1986. "Logit versus discriminant analysis : A specification test and application to corporate bankruptcies," Journal of Econometrics, Elsevier, vol. 31(2), pages 151-178, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    2. Pierre Collin-Dufresne & Robert S. Goldstein & Jean Helwege, 2010. "Is Credit Event Risk Priced? Modeling Contagion via the Updating of Beliefs," NBER Working Papers 15733, National Bureau of Economic Research, Inc.
    3. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    5. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    6. Magdalena Pisa & Dennis Bams & Christian Wolff, 2012. "Modeling default correlation in a US retail loan portfolio," LSF Research Working Paper Series 12-19, Luxembourg School of Finance, University of Luxembourg.
    7. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    8. Wenlang Zhang & Gaofeng Han & Steven Chan, 2014. "How Strong are the Linkages between Real Estate and Other Sectors in China?," Working Papers 112014, Hong Kong Institute for Monetary Research.
    9. Ulrich Erlenmaier & Hans Gersbach, 2014. "Default Correlations in the Merton Model," Review of Finance, European Finance Association, vol. 18(5), pages 1775-1809.
    10. Pu, Xiaoling & Zhao, Xinlei, 2012. "Correlation in credit risk changes," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1093-1106.
    11. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    12. Kay Giesecke & Baeho Kim, 2011. "Systemic Risk: What Defaults Are Telling Us," Management Science, INFORMS, vol. 57(8), pages 1387-1405, August.
    13. Jennie Bai & Pierre Collin-Dufresne & Robert S. Goldstein & Jean Helwege, 2012. "On bounding credit event risk premia," Staff Reports 577, Federal Reserve Bank of New York.
    14. Didier Cossin & Henry Schellhorn, 2007. "Credit Risk in a Network Economy," Management Science, INFORMS, vol. 53(10), pages 1604-1617, October.
    15. Adrian, Tobias, 2017. "Risk Management and Regulation," CEPR Discussion Papers 12422, C.E.P.R. Discussion Papers.
    16. Zhu, Haibin & Tarashev, Nikola A., 2008. "The pricing of correlated default risk: evidence from the credit derivatives market," Discussion Paper Series 2: Banking and Financial Studies 2008,09, Deutsche Bundesbank.
    17. Albrecht, Peter, 2005. "Kreditrisiken - Modellierung und Management: Ein Überblick," German Risk and Insurance Review (GRIR), University of Cologne, Department of Risk Management and Insurance, vol. 1(2), pages 22-152.
    18. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 221-262, March.
    19. M. Hashem Pesaran & Til Schuermann & Bjorn-Jakob Treutler, 2007. "Global Business Cycles and Credit Risk," NBER Chapters, in: The Risks of Financial Institutions, pages 419-474, National Bureau of Economic Research, Inc.
    20. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.

    More about this item

    JEL classification:

    • G3 - Financial Economics - - Corporate Finance and Governance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:11961. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.