IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i12p1903-1913.html
   My bibliography  Save this article

The impact of different correlation approaches on valuing credit default swaps with counterparty risk

Author

Listed:
  • Gunter Meissner
  • Seth Rooder
  • Kristofor Fan

Abstract

This paper has two main contributions. We first build a general framework for valuing credit default swaps (CDS) with counterparty risk. We extend the work of Hull and White, and Hamp, Kettunen and Meissner, and build two quadruple trees. One tree represents the CDS spread payments, and one tree represents the CDS payoffs in the case of default. The trees are then combined using swap evaluation techniques to derive a closed-form solution for the CDS spread including counterparty risk. This is our first contribution. Our second contribution is testing the impact of five different reference asset--counterparty dependence concepts on the CDS price. We find that different dependence approaches lead to significanly different CDS spreads. The basic version of the model can be calibrated to market CDS spreads. A Visual Basic source code of the model can be provided upon request.

Suggested Citation

  • Gunter Meissner & Seth Rooder & Kristofor Fan, 2013. "The impact of different correlation approaches on valuing credit default swaps with counterparty risk," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1903-1913, December.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1903-1913
    DOI: 10.1080/14697688.2012.750008
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.750008
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    5. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    6. Lutz Schloegl & Dominic O’Kane, 2005. "A note on the large homogeneous portfolio approximation with the Student-t copula," Finance and Stochastics, Springer, vol. 9(4), pages 577-584, October.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515 World Scientific Publishing Co. Pte. Ltd..
    10. Zhou, Chunsheng, 2001. "An Analysis of Default Correlations and Multiple Defaults," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 555-576.
    11. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    12. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    13. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453 World Scientific Publishing Co. Pte. Ltd..
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    16. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409 World Scientific Publishing Co. Pte. Ltd..
    17. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    18. Albanese, Claudio & Vidler, Alicia, 2008. "Dynamic Conditioning and Credit Correlation Baskets," MPRA Paper 8368, University Library of Munich, Germany, revised 21 Apr 2008.
    19. Graeme West, 2005. "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 371-385.
    20. Duffie, Darrell & Huang, Ming, 1996. " Swap Rates and Credit Quality," Journal of Finance, American Finance Association, vol. 51(3), pages 921-949, July.
    21. Philipp J. Schonbucher, 1997. "Team Structure Modelling of Defaultable Bonds," FMG Discussion Papers dp272, Financial Markets Group.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:12:p:1903-1913. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.