IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v12y2005i4p371-385.html
   My bibliography  Save this article

Calibration of the SABR Model in Illiquid Markets

Author

Listed:
  • Graeme West

Abstract

Recently the SABR model has been developed to manage the option smile which is observed in derivatives markets. Typically, calibration of such models is straightforward as there is adequate data available for robust extraction of the parameters required asinputs to the model. The paper considers calibration of the model in situations where input data is very sparse. Although this will require some creative decision making, the algorithms developed here are remarkably robust and can be used confidently for mark to market and hedging of option portfolios.

Suggested Citation

  • Graeme West, 2005. "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 371-385.
  • Handle: RePEc:taf:apmtfi:v:12:y:2005:i:4:p:371-385
    DOI: 10.1080/13504860500148672
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860500148672
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860500148672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    3. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    4. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harish S. Bhat & Nitesh Kumar, 2015. "Large-Scale Empirical Tests of the Markov Tree Model," IJFS, MDPI, vol. 3(3), pages 1-39, July.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    3. Qasim Nasar-Ullah, 2013. "A parallel implementation of a derivative pricing model incorporating SABR calibration and probability lookup tables," Papers 1301.3118, arXiv.org.
    4. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    5. Petteri Piiroinen & Lassi Roininen & Tobias Schoden & Martin Simon, 2018. "Asset Price Bubbles: An Option-based Indicator," Papers 1805.07403, arXiv.org, revised Jul 2018.
    6. Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064, arXiv.org.
    7. Jonathan Chih Win Zaw Tun & Papitchaya Wisankosol, 2021. "The Impact of an ODI on the Development of Leadership, Employee Motivation and Employee Engagement towards Better Performance of Employees: A Case Study," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 22-43.
    8. Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
    9. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    10. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    11. Kotzé, Antonie & Labuschagne, Coenraad C.A. & Nair, Merell L. & Padayachi, Nadine, 2013. "Arbitrage-free implied volatility surfaces for options on single stock futures," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 380-399.
    12. Kenichiro Shiraya & Akihiko Takahashi, 2009. "Pricing Average Options on Commodities," CARF F-Series CARF-F-177, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Feb 2012.
    13. Fernández, J.L. & Ferreiro, A.M. & García-Rodríguez, J.A. & Leitao, A. & López-Salas, J.G. & Vázquez, C., 2013. "Static and dynamic SABR stochastic volatility models: Calibration and option pricing using GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 55-75.
    14. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    15. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
    16. Kenichiro Shiraya & Akihiko Takahashi, 2010. "Pricing Average Options on Commodities," CIRJE F-Series CIRJE-F-747, CIRJE, Faculty of Economics, University of Tokyo.
    17. Gunter Meissner & Seth Rooder & Kristofor Fan, 2013. "The impact of different correlation approaches on valuing credit default swaps with counterparty risk," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1903-1913, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    2. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    3. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    4. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    5. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.
    8. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    9. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    11. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    12. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    13. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    14. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    15. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    16. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    17. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    18. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    19. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    20. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:12:y:2005:i:4:p:371-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.