IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.3299.html
   My bibliography  Save this paper

Valuation equations for stochastic volatility models

Author

Listed:
  • Erhan Bayraktar
  • Constantinos Kardaras
  • Hao Xing

Abstract

We analyze the valuation partial differential equation for European contingent claims in a general framework of stochastic volatility models where the diffusion coefficients may grow faster than linearly and degenerate on the boundaries of the state space. We allow for various types of model behavior: the volatility process in our model can potentially reach zero and either stay there or instantaneously reflect, and the asset-price process may be a strict local martingale. Our main result is a necessary and sufficient condition on the uniqueness of classical solutions to the valuation equation: the value function is the unique nonnegative classical solution to the valuation equation among functions with at most linear growth if and only if the asset-price is a martingale.

Suggested Citation

  • Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
  • Handle: RePEc:arx:papers:1004.3299
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.3299
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    2. Aleksandar Mijatovi'c & Mikhail Urusov, 2011. "A note on a paper by Wong and Heyde," Papers 1105.3918, arXiv.org.
    3. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    4. Daniel Fernholz & Ioannis Karatzas, 2010. "On optimal arbitrage," Papers 1010.4987, arXiv.org.
    5. Robert A. Jarrow, 2015. "Asset Price Bubbles," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 201-218, December.
    6. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    7. Erhan Bayraktar & Hao Xing, 2009. "On the uniqueness of classical solutions of Cauchy problems," Papers 0908.1086, arXiv.org, revised Sep 2009.
    8. David Hobson, 2010. "Comparison results for stochastic volatility models via coupling," Finance and Stochastics, Springer, vol. 14(1), pages 129-152, January.
    9. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    10. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    11. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    12. Steven L. Heston & Mark Loewenstein & Gregory A. Willard, 2007. "Options and Bubbles," The Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 359-390.
    13. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2009. "Strict Local Martingale Deflators and Pricing American Call-Type Options," Papers 0908.1082, arXiv.org, revised Dec 2009.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Baldeaux & Alexander Badran, 2014. "Consistent Modelling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(4), pages 299-312, September.
    2. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    3. Dareiotis, Konstantinos & Ekström, Erik, 2019. "Density symmetries for a class of 2-D diffusions with applications to finance," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 452-472.
    4. Paul M. N. Feehan & Ruoting Gong & Jian Song, 2015. "Feynman-Kac Formulas for Solutions to Degenerate Elliptic and Parabolic Boundary-Value and Obstacle Problems with Dirichlet Boundary Conditions," Papers 1509.03864, arXiv.org.
    5. Xiaoshan Chen & Yu-Jui Huang & Qingshuo Song & Chao Zhu, 2013. "The Stochastic Solution to a Cauchy Problem for Degenerate Parabolic Equations," Papers 1309.0046, arXiv.org, revised Mar 2017.
    6. Keller-Ressel, Martin, 2015. "Simple examples of pure-jump strict local martingales," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4142-4153.
    7. Baldeaux, Jan & Grasselli, Martino & Platen, Eckhard, 2015. "Pricing currency derivatives under the benchmark approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 34-48.
    8. Irina Penner & Anthony Réveillac, 2013. "Risk measures for processes and BSDEs," Working Papers hal-00814702, HAL.
    9. Irina Penner & Anthony Réveillac, 2015. "Risk measures for processes and BSDEs," Finance and Stochastics, Springer, vol. 19(1), pages 23-66, January.
    10. Irina Penner & Anthony Reveillac, 2013. "Risk measures for processes and BSDEs," Papers 1304.4853, arXiv.org.
    11. Martin Keller-Ressel, 2014. "Simple examples of pure-jump strict local martingales," Papers 1405.2669, arXiv.org, revised Jun 2015.
    12. Chen Xiaoshan & Song Qingshuo, 2013. "American option of stochastic volatility model with negative Fichera function on degenerate boundary," Papers 1306.0345, arXiv.org.
    13. Kexin Chen & Hoi Ying Wong, 2022. "Duality in optimal consumption--investment problems with alternative data," Papers 2210.08422, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    4. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    5. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2012. "Strict local martingale deflators and valuing American call-type options," Finance and Stochastics, Springer, vol. 16(2), pages 275-291, April.
    6. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    7. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009.
    8. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    9. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    10. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    11. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    12. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Siddiqi, Hammad, 2013. "Analogy Making, Option Prices, and Implied Volatility," MPRA Paper 48862, University Library of Munich, Germany.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    17. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    18. Johannes Ruf, 2012. "Negative Call Prices," Papers 1204.1903, arXiv.org, revised Jan 2013.
    19. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    20. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.3299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.