IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Consistent Modeling of VIX and Equity Derivatives Using a 3/2 plus Jumps Model

  • Jan Baldeaux
  • Alexander Badran

In this paper quasi-closed-form solutions are derived for the price of equity and VIX derivatives under the assumption that the underlying follows a 3/2 process with jumps in the index. The newly-found formulae allow for an empirical analysis to be performed. In the case of the pure-diffusion 3/2 model, the dynamics are rich enough to capture the observed upward-sloping implied-volatility skew in VIX options. This observation contradicts a common perception in the literature that jumps are required for the consistent modeling of equity and VIX derivatives. We find that the 3/2 plus jumps model is more parsimonious than competing models from its class; it is able to accurately capture the joint dynamics of equity and VIX derivatives, without sacrificing analytic tractability. The model produces a good short-term fit to the implied volatility of index options due to the richer dynamics, while retaining the analytic tractability of its pure-diffusion counterpart.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp306.pdf
Download Restriction: no

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 306.

as
in new window

Length: 20
Date of creation: 01 Mar 2012
Date of revision:
Handle: RePEc:uts:rpaper:306
Contact details of provider: Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alexey Medvedev & Olivier Scaillet, . "Approximation and Calibration of Short-Term Implied Volatilities under Jump-Diffusion Stochastic Volatility," Swiss Finance Institute Research Paper Series 06-08, Swiss Finance Institute, revised Jan 2006.
  2. Andrey Itkin & Peter Carr, 2010. "Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case," Review of Derivatives Research, Springer, vol. 13(2), pages 141-176, July.
  3. Peter Carr & HĂ©lyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
  4. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
  5. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
  6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  7. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
  8. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
  9. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:306. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.