IDEAS home Printed from
   My bibliography  Save this paper

Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model


  • Jan Baldeaux
  • Alexander Badran


In this paper quasi-closed-form solutions are derived for the price of equity and VIX derivatives under the assumption that the underlying follows a 3/2 process with jumps in the index. The newly-found formulae allow for an empirical analysis to be performed. In the case of the pure-diffusion 3/2 model, the dynamics are rich enough to capture the observed upward-sloping implied-volatility skew in VIX options. This observation contradicts a common perception in the literature that jumps are required for the consistent modeling of equity and VIX derivatives. We find that the 3/2 plus jumps model is more parsimonious than competing models from its class; it is able to accurately capture the joint dynamics of equity and VIX derivatives, without sacrificing analytic tractability. The model produces a good short-term fit to the implied volatility of index options due to the richer dynamics, while retaining the analytic tractability of its pure-diffusion counterpart.

Suggested Citation

  • Jan Baldeaux & Alexander Badran, 2012. "Consistent Modeling of VIX and Equity Derivatives Using a 3/2 Plus Jumps Model," Research Paper Series 306, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:306

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    2. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    3. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    4. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    5. Andrey Itkin & Peter Carr, 2010. "Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case," Review of Derivatives Research, Springer, vol. 13(2), pages 141-176, July.
    6. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    7. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, June.
    8. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    9. Alexey Medvedev & Olivier Scaillet, "undated". "Approximation and Calibration of Short-Term Implied Volatilities under Jump-Diffusion Stochastic Volatility," Swiss Finance Institute Research Paper Series 06-08, Swiss Finance Institute, revised Jan 2006.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ivan Guo & Gregoire Loeper, 2016. "Pricing Bounds for VIX Derivatives via Least Squares Monte Carlo," Papers 1611.00464,
    2. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136,
    3. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    4. Chi Hung Yuen & Wendong Zheng & Yue Kuen Kwok, 2015. "Pricing Exotic Discrete Variance Swaps under the 3/2-Stochastic Volatility Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(5), pages 421-449, November.
    5. repec:ids:ijbder:v:3:y:2017:i:2:p:153-175 is not listed on IDEAS
    6. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 27-48, January.
    7. Alexander Badran & Beniamin Goldys, 2015. "A Market Model for VIX Futures," Papers 1504.00428,
    8. Jean-Pierre Fouque & Yuri F. Saporito, 2017. "Heston Stochastic Vol-of-Vol Model for Joint Calibration of VIX and S&P 500 Options," Papers 1706.00873,
    9. Wei Lin & Shenghong Li & Xingguo Luo & Shane Chern, 2015. "Consistent Pricing of VIX and Equity Derivatives with the 4/2 Stochastic Volatility Plus Jumps Model," Papers 1510.01172,, revised Nov 2015.
    10. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    11. Ma, Jingtang & Li, Wenyuan & Han, Xu, 2015. "Stochastic lattice models for valuation of volatility options," Economic Modelling, Elsevier, vol. 47(C), pages 93-104.
    12. Wei Lin & Shenghong Li & Shane Chern, 2017. "Pricing VIX Derivatives With Free Stochastic Volatility Model," Papers 1703.06020,
    13. Andrew Papanicolaou & Ronnie Sircar, 2014. "A regime-switching Heston model for VIX and S&P 500 implied volatilities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1811-1827, October.
    14. repec:spr:joptap:v::y::i::d:10.1007_s10957-017-1168-2 is not listed on IDEAS
    15. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.

    More about this item


    stochastic volatility plus jumps model; 3/2 model; VIX derivatives;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G1 - Financial Economics - - General Financial Markets
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:306. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.