IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The Stochastic Solution to a Cauchy Problem for Degenerate Parabolic Equations

Listed author(s):
  • Xiaoshan Chen
  • Yu-Jui Huang
  • Qingshuo Song
  • Chao Zhu
Registered author(s):

    We study the stochastic solution to a Cauchy problem for a degenerate parabolic equation arising from option pricing. When the diffusion coefficient of the underlying price process is locally H\"older continuous with exponent $\delta\in (0, 1]$, the stochastic solution, which represents the price of a European option, is shown to be a classical solution to the Cauchy problem. This improves the standard requirement $\delta\ge 1/2$. Uniqueness results, including a Feynman-Kac formula and a comparison theorem, are established without assuming the usual linear growth condition on the diffusion coefficient. When the stochastic solution is not smooth, it is characterized as the limit of an approximating smooth stochastic solutions. In deriving the main results, we discover a new, probabilistic proof of Kotani's criterion for martingality of a one-dimensional diffusion in natural scale.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1309.0046.

    in new window

    Date of creation: Aug 2013
    Date of revision: Mar 2017
    Handle: RePEc:arx:papers:1309.0046
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    2. Hardy Hulley & Eckhard Platen, 2008. "A Visual Classification of Local Martingales," Research Paper Series 238, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299,, revised Dec 2011.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.0046. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.