IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.0345.html
   My bibliography  Save this paper

American option of stochastic volatility model with negative Fichera function on degenerate boundary

Author

Listed:
  • Chen Xiaoshan
  • Song Qingshuo

Abstract

In this paper we study a general framework of American put option with stochastic volatility whose value function is associated with a 2-dimensional parabolic variational inequality with degenerate boundaries. We apply PDE methods to analyze the existences of the strong solution and the properties of the 2-dimensional manifold for the free boundary. Thanks to the regularity result on the solution of the underlying PDE, we can also provide the uniqueness of the solution by the argument of the verification theorem together with the generalized Ito's formula even though the solution may not be second order differentiable in the space variable across the free boundary.

Suggested Citation

  • Chen Xiaoshan & Song Qingshuo, 2013. "American option of stochastic volatility model with negative Fichera function on degenerate boundary," Papers 1306.0345, arXiv.org.
  • Handle: RePEc:arx:papers:1306.0345
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.0345
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    2. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    3. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.0345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.