IDEAS home Printed from
   My bibliography  Save this paper

Extensive networks would eliminate the demand for pricing formulas


  • Jaegi Jeon
  • Kyunghyun Park
  • Jeonggyu Huh


In this study, we generate a large number of implied volatilities for the Stochastic Alpha Beta Rho (SABR) model using a graphics processing unit (GPU) based simulation and enable an extensive neural network to learn them. This model does not have any exact pricing formulas for vanilla options, and neural networks have an outstanding ability to approximate various functions. Surprisingly, the network reduces the simulation noises by itself, thereby achieving as much accuracy as the Monte-Carlo simulation. Extremely high accuracy cannot be attained via existing approximate formulas. Moreover, the network is as efficient as the approaches based on the formulas. When evaluating based on high accuracy and efficiency, extensive networks can eliminate the necessity of the pricing formulas for the SABR model. Another significant contribution is that a novel method is proposed to examine the errors based on nonlinear regression. This approach is easily extendable to other pricing models for which it is hard to induce analytic formulas.

Suggested Citation

  • Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064,
  • Handle: RePEc:arx:papers:2101.09064

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806,
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Jan Obloj, 2007. "Fine-tune your smile: Correction to Hagan et al," Papers 0708.0998,, revised Mar 2008.
    4. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Garcia, Rene & Gencay, Ramazan, 2000. "Pricing and hedging derivative securities with neural networks and a homogeneity hint," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 93-115.
    7. Ryan Ferguson & Andrew Green, 2018. "Deeply Learning Derivatives," Papers 1809.02233,, revised Oct 2018.
    8. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    9. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    10. Graeme West, 2005. "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 371-385.
    11. Ali Hirsa & Tugce Karatas & Amir Oskoui, 2019. "Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes," Papers 1902.05810,
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620,, revised May 2020.
    2. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    3. Antoine Jacquier & Emma R. Malone & Mugad Oumgari, 2019. "Stacked Monte Carlo for option pricing," Papers 1903.10795,
    4. Ryno du Plooy & Pierre J. Venter, 2021. "A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework," JRFM, MDPI, vol. 14(6), pages 1-18, June.
    5. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    6. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806,
    7. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    8. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500,
    9. Masanori Hirano & Kentaro Imajo & Kentaro Minami & Takuya Shimada, 2023. "Efficient Learning of Nested Deep Hedging using Multiple Options," Papers 2305.12264,
    10. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    11. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    12. Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757,
    13. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    14. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    15. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    16. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    17. Weilong Fu & Ali Hirsa, 2022. "Solving barrier options under stochastic volatility using deep learning," Papers 2207.00524,
    18. S'andor Kuns'agi-M'at'e & G'abor F'ath & Istv'an Csabai & G'abor Moln'ar-S'aska, 2022. "Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks," Papers 2208.14038,, revised Dec 2022.
    19. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    20. Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.09064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.