IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v162y2011i2p312-325.html
   My bibliography  Save this article

Modeling frailty-correlated defaults using many macroeconomic covariates

Author

Listed:
  • Koopman, Siem Jan
  • Lucas, André
  • Schwaab, Bernd

Abstract

We propose a novel time series panel data framework for estimating and forecasting time-varying corporate default rates subject to observed and unobserved risk factors. In an empirical application for a U.S. dataset, we find a large and significant role for a dynamic frailty component even after controlling for more than 80% of the variation in more than 100 macro-financial covariates and other standard risk factors. We emphasize the need for a latent component to prevent a downward bias in estimated default rate volatility and in estimated probabilities of extreme default losses on portfolios of U.S. debt. The latent factor does not substitute for a single omitted macroeconomic variable. We argue that it captures different omitted effects at different times. We also provide empirical evidence that default and business cycle conditions partly depend on different processes. In an out-of-sample forecasting study for point-in-time default probabilities, we obtain mean absolute error reductions of more than forty percent when compared to models with observed risk factors only. The forecasts are relatively more accurate when default conditions diverge from aggregate macroeconomic conditions.

Suggested Citation

  • Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
  • Handle: RePEc:eee:econom:v:162:y:2011:i:2:p:312-325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(11)00030-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    3. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    4. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    5. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    6. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    9. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    10. Jorion, Philippe & Zhang, Gaiyan, 2007. "Good and bad credit contagion: Evidence from credit default swaps," Journal of Financial Economics, Elsevier, vol. 84(3), pages 860-883, June.
    11. Frederic Boissay & Reint Gropp, 2007. "Trade Credit Defaults and Liquidity Provision by Firms," Working Paper Series: Finance and Accounting 179, Department of Finance, Goethe University Frankfurt am Main.
    12. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    13. Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013. "Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
    14. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    15. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    16. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    17. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    18. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:162:y:2011:i:2:p:312-325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.