IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v78y2025ics154461232500385x.html
   My bibliography  Save this article

Macroeconomic factors, industrial enterprises, and debt default prediction: Based on the VAR-GRU model

Author

Listed:
  • Liu, Zhenqing
  • Luo, Yi
  • Duan, Mohan

Abstract

This study uses a dynamic factor model to construct predictive factors and applies a machine learning-based vector autoregressive model to predict the possibility of corporate bond defaults. The vector autoregressive (VAR) model mainly examines the dynamic interaction relationships among multiple variables, so as to explain the dynamic impacts of various economic shocks on economic variables. It mainly studies the relationships among endogenous variables. Endogenous variables are those variables that are involved in the model and determined within the model system. Exogenous variables, on the other hand, are variables determined by factors outside the model. The Gated Recurrent Unit (GRU), which is a type of Recurrent Neural Network (RNN), can address issues such as the inability of RNNs to have long-term memory and the gradients in backpropagation. It is relatively easy to train. According to data from March 2014 to November 2021, the relevant findings are twofold. 1) A regulatory-based stress test is a crucial tool for measuring the financial sector's resilience in response to challenging macroeconomic conditions. 2) Macroeconomic conditions that may seem unrealistic during economic booms are now often used by regulators as benchmarks for evaluating the losses and capital requirements for market and credit portfolios.

Suggested Citation

  • Liu, Zhenqing & Luo, Yi & Duan, Mohan, 2025. "Macroeconomic factors, industrial enterprises, and debt default prediction: Based on the VAR-GRU model," Finance Research Letters, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:finlet:v:78:y:2025:i:c:s154461232500385x
    DOI: 10.1016/j.frl.2025.107122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232500385X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.107122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    2. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
    3. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    4. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    5. Giampaolo Gabbi & Andrea Sironi, 2005. "Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary market spreads," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 59-74.
    6. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    7. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    8. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    9. Michael Dueker & Katrin Assenmacher-Wesche, 2010. "Forecasting macro variables with a Qual VAR business cycle turning point index," Applied Economics, Taylor & Francis Journals, vol. 42(23), pages 2909-2920.
    10. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    11. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2019. "Common risk factors in the cross-section of corporate bond returns," Journal of Financial Economics, Elsevier, vol. 131(3), pages 619-642.
    12. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    13. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 10, pages 515-554, Elsevier.
    14. Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
    15. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    16. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    17. Bangia, Anil & Diebold, Francis X. & Kronimus, Andre & Schagen, Christian & Schuermann, Til, 2002. "Ratings migration and the business cycle, with application to credit portfolio stress testing," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 445-474, March.
    18. Borus Jungbacker & Siem Jan Koopman, 2015. "Likelihood‐based dynamic factor analysis for measurement and forecasting," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-21, June.
    19. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    20. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    21. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    24. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    25. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    26. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    27. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    28. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
    2. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    3. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    4. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2014. "Nowcasting and forecasting global financial sector stress and credit market dislocation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 741-758.
    5. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    6. Nathan Bedock & Dalibor Stevanovic, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
    7. Jaehoon Hahn & Ho-Seong Moon, 2016. "Credit Cycle and the Macroeconomy: Empirical Evidence from Korea," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 22(4), pages 76-108, December.
    8. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    9. André Lucas & Siem Jan Koopman, 2005. "Business and default cycles for credit risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 311-323.
    10. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    12. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    13. Serati, Massimiliano & Manera, Matteo & Plotegher, Michele, 2008. "Modeling Electricity Prices: From the State of the Art to a Draft of a New Proposal," International Energy Markets Working Papers 44426, Fondazione Eni Enrico Mattei (FEEM).
    14. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    15. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    16. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    17. Miroslav Plasil & Tomas Konecny & Jakub Seidler & Petr Hlavac, 2015. "In the Quest of Measuring the Financial Cycle," Working Papers 2015/05, Czech National Bank, Research and Statistics Department.
    18. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Telg, Sean & Dubinova, Anna & Lucas, Andre, 2023. "Covid-19, credit risk management modeling, and government support," Journal of Banking & Finance, Elsevier, vol. 147(C).
    20. De Santis, Roberto A., 2018. "Unobservable country bond premia and fragmentation," Journal of International Money and Finance, Elsevier, vol. 82(C), pages 1-25.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:78:y:2025:i:c:s154461232500385x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.