IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2012i4p521-532.html
   My bibliography  Save this article

Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008

Author

Listed:
  • Siem Jan Koopman
  • André Lucas
  • Bernd Schwaab

Abstract

We develop a high-dimensional, nonlinear, and non-Gaussian dynamic factor model for the decomposition of systematic default risk conditions into latent components for (1) macroeconomic/financial risk, (2) autonomous default dynamics (frailty), and (3) industry-specific effects. We analyze discrete U.S. corporate default counts together with macroeconomic and financial variables in one unifying framework. We find that approximately 35% of default rate variation is due to systematic and industry factors. Approximately one-third of this systematic variation is captured by the macroeconomic and financial factors. The remainder is captured by frailty (40%) and industry (25%) effects. The default-specific effects are particularly relevant before and during times of financial turbulence. We detect a build-up of systematic risk over the period preceding the 2008 credit crisis. This article has online supplementary material.

Suggested Citation

  • Siem Jan Koopman & André Lucas & Bernd Schwaab, 2012. "Dynamic Factor Models With Macro, Frailty, and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 521-532, May.
  • Handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:521-532
    DOI: 10.1080/07350015.2012.700859
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.700859
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.700859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    5. Darrell Duffie & Andreas Eckner & Guillaume Horel & Leandro Saita, 2009. "Frailty Correlated Default," Journal of Finance, American Finance Association, vol. 64(5), pages 2089-2123, October.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    2. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
    3. Siem Jan Koopman & Andre Lucas & Bernd Schwaab, 2010. "Macro, Industry and Frailty Effects in Defaults: The 2008 Credit Crisis in Perspective," Tinbergen Institute Discussion Papers 10-004/2, Tinbergen Institute, revised 24 Aug 2010.
    4. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2008. "Forecasting Cross-Sections of Frailty-Correlated Default," Tinbergen Institute Discussion Papers 08-029/4, Tinbergen Institute.
    5. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2014. "Nowcasting and forecasting global financial sector stress and credit market dislocation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 741-758.
    6. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    7. Bernd Schwaab & Andre Lucas & Siem Jan Koopman, 2010. "Systemic Risk Diagnostics," Tinbergen Institute Discussion Papers 10-104/2/DSF 2, Tinbergen Institute, revised 29 Nov 2010.
    8. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    9. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    10. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    11. Harjoat S. Bhamra & Christian Dorion & Alexandre Jeanneret & Michael Weber, 2018. "Low Inflation: High Default Risk AND High Equity Valuations," NBER Working Papers 25317, National Bureau of Economic Research, Inc.
    12. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    13. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    14. Pu, Xiaoling & Zhao, Xinlei, 2012. "Correlation in credit risk changes," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1093-1106.
    15. André A. Monteiro, 2008. "Parameter Driven Multi-state Duration Models: Simulated vs. Approximate Maximum Likelihood Estimation," Tinbergen Institute Discussion Papers 08-021/2, Tinbergen Institute.
    16. Lando, David & Nielsen, Mads Stenbo, 2010. "Correlation in corporate defaults: Contagion or conditional independence?," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 355-372, July.
    17. Kay Giesecke & Baeho Kim, 2011. "Systemic Risk: What Defaults Are Telling Us," Management Science, INFORMS, vol. 57(8), pages 1387-1405, August.
    18. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    19. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    20. Ye, Xiaoxia & Yu, Fan & Zhao, Ran, 2022. "Credit derivatives and corporate default prediction," Journal of Banking & Finance, Elsevier, vol. 138(C).

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2012:i:4:p:521-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.