IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Block Sampler and Posterior Mode Estimation for A Nonlinear and Non-Gaussian State-Space Model with Correlated Errors

  • Yasuhiro Omori

    (Faculty of Economics, University of Tokyo)

  • Toshiaki Watanabe

    (Institute of Economic Research, Hitotsubashi University)

This article introduces a new efficient simulation smoother and disturbance smoother for general state-space models where there exists a correlation between error terms of the measurement and state equations. The state vector is divided into several blocks where each block consists of many state variables. For each block, corresponding disturbances are sampled simultaneously from their conditional posterior distribution. The algorithm is based on the multivariate normal approximation of the conditional posterior density and exploits a conventional simulation smoother for a linear and Gaussian state space model. The performance of our method is illustrated using two examples (1) stochastic volatility models with leverage effects and (2) stochastic volatility models with leverage effects and state-dependent variances. The popular single move sampler which samples a state variable at a time is also conducted for comparison in the first example. It is shown that our proposed sampler produces considerable improvement in the mixing property of the Markov chain Monte Carlo chain.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo in its series CARF F-Series with number CARF-F-104.

in new window

Length: 35 pages
Date of creation: Aug 2007
Date of revision:
Handle: RePEc:cfi:fseres:cf104
Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
Phone: +81-3-5841-0682
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
  2. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  3. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
  4. Andrew D. Sanford & Gael M. Martin, 2003. "Simulation-Based Bayesian Estimation of Affine Term Structure Models," Monash Econometrics and Business Statistics Working Papers 15/03, Monash University, Department of Econometrics and Business Statistics.
  5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  6. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, EconWPA.
  8. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
  9. Hisashi Tanizaki, 2001. "Nonlinear and Non-Gaussian State Space Modeling Using Sampling Techniques," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(1), pages 63-81, March.
  10. Fahrmeir, Ludwig & Wagenpfeil, Stefan, 1997. "Penalized likelihood estimation and iterative Kalman smoothing for non-Gaussian dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 295-320, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf104. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.