IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20020068.html
   My bibliography  Save this paper

Stock Index Volatility Forecasting with High Frequency Data

Author

Listed:
  • Eugenie Hol

    (University of Birmingham)

  • Siem Jan Koopman

    () (Free University Amsterdam)

Abstract

The increasing availability of financial market data at intraday frequencies has not only led to the development of improved ex-post volatility measurements but has also inspired research into their potential value as an informa-tion source for longer horizon volatility forecasts. In this paper we explore the forecasting value of these high fre-quency series in conjunction with a variety of volatility models for returns on the Standard & Poor's 100 stock index. We consider two so-calIed realised volatility models in which the cumulative squared intraday returns are modelled directly. We adopt an unobserved components model where actual volatility is modelled as an autore-gressive moving average process and an autoregressive fractionally integrated moving average model which allows for long memory in the logarithms of realised volatility. We compare the predictive abilities of these realised vola-tility models with those of daily time-varying volatility models, such as Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models which are both extended to include the intraday volatility measure. For forecasting horizons ranging from one day to one week the most accurate out-of-sample volatility forecasts are obtained with the realised volatility and the extended SV models; all these models contain in-formation inherent in the high frequency returns. In the absence of the intraday volatility information, we find that the SV model outperforms the GARCH model.

Suggested Citation

  • Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20020068
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/02068.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Martens, Martin, 2001. "Forecasting daily exchange rate volatility using intraday returns," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 1-23, February.
    3. Bos, Charles S. & Franses, Philip Hans & Ooms, Marius, 2002. "Inflation, forecast intervals and long memory regression models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 243-264.
    4. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    5. Martin Martens, 2002. "Measuring and forecasting S&P 500 index‐futures volatility using high‐frequency data," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(6), pages 497-518, June.
    6. Poon, Ser-Huang & Taylor, Stephen J., 1992. "Stock returns and volatility: An empirical study of the UK stock market," Journal of Banking & Finance, Elsevier, vol. 16(1), pages 37-59, February.
    7. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    9. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    10. Laurent, Sebastien & Peters, Jean-Philippe, 2002. " G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-485, July.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
    13. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    14. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    15. Roel C.A. OOMEN, 2001. "Using high frequency stock market index data to calculate, model and forecast realized return variance," Economics Working Papers ECO2001/06, European University Institute.
    16. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    17. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    18. Bera, Anil K & Higgins, Matthew L, 1993. " ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    19. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Djupsjobacka, 2010. "Implications of market microstructure for realized variance measurement," The European Journal of Finance, Taylor & Francis Journals, vol. 16(1), pages 27-43.
    2. Linlan Xiao, 2013. "Realized volatility forecasting: empirical evidence from stock market indices and exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 23(1), pages 57-69, January.
    3. repec:eee:intfin:v:52:y:2018:i:c:p:102-113 is not listed on IDEAS
    4. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Keywords

    ARFIMA; Financial market volatility; GARCH; Realised volatility; Stochastic volatility; Stock index returns; Unobserved ARMA component;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20020068. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tinbergen Office +31 (0)10-4088900). General contact details of provider: http://edirc.repec.org/data/tinbenl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.