IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Exchange Rate Volatility with High Frequency Data: Is the Euro Different?

  • Georgios Chortareas

    (University of Essex)

  • John Nankervis

    (University of Essex)

  • Ying Jiang

    (University of Essex)

This paper focuses on forecasting volatility of high frequency Euro exchange rates. Four 15 minute frequency Euro exchange rate series, including Euro/CHF, Euro/GBP, Euro/JPY and Euro/USD, are used to test the forecast performance of six models, including both traditional time series volatility models and the realized volatility model. Besides the normally used regression test and accuracy test, an equal accuracy test, the HLN-DM test, and a superior predictive ability test are also employed in the out-of-sample forecast evaluation. The FIGARCH model is found to be superior in almost all exchange rate series. Although the widely preferred ARFIMA model shows better performance than the traditional daily volatility models, generally speaking, it cannot surpass the FIGARCH model and the intraday GARCH model. Furthermore, the SVX model does not significantly outperform the SV model in the accuracy test, which contradicts the results of some earlier research. The paper confirms the advantage of using high frequency data and modelling the long memory factor. It also analyses the characteristics of Euro exchange rates and compares the test results with the conclusions drawn by previous studies

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.org/mmf2006/up.6128.1145456796.pdf
Download Restriction: no

Paper provided by Money Macro and Finance Research Group in its series Money Macro and Finance (MMF) Research Group Conference 2006 with number 79.

as
in new window

Length:
Date of creation: 02 Feb 2007
Date of revision:
Handle: RePEc:mmf:mmfc06:79
Contact details of provider: Web page: http://www.essex.ac.uk/afm/mmf/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. West, K.D. & Cho, D., 1993. "The Predictive Ability of Several Models of Exchange Rate Volatility," Working papers 9317r, Wisconsin Madison - Social Systems.
  2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  4. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  5. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-061, New York University, Leonard N. Stern School of Business-.
  7. Frank, Murray & Gencay, Ramazan & Stengos, Thanasis, 1988. "International chaos?," European Economic Review, Elsevier, vol. 32(8), pages 1569-1584, October.
  8. Lobato, Ignacio & Nankervis, John C & Savin, N E, 2001. "Testing for Autocorrelation Using a Modified Box-Pierce Q Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 187-205, February.
  9. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  10. Taisei Kaizoji & Thomas Lux, 2004. "Forecasting Volume and Volatility in the Tokyo Stock Market: The Advantage of Long Memory Models," Computing in Economics and Finance 2004 158, Society for Computational Economics.
  11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," NBER Working Papers 7488, National Bureau of Economic Research, Inc.
  12. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
  13. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
  14. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  15. Hatanaka, Michio, 1974. "An efficient two-step estimator for the dynamic adjustment model with autoregressive errors," Journal of Econometrics, Elsevier, vol. 2(3), pages 199-220, September.
  16. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  17. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  18. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
  19. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  20. Jose A. Lopez, 1995. "Evaluating the predictive accuracy of volatility models," Research Paper 9524, Federal Reserve Bank of New York.
  21. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 431-455, December.
  22. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mmf:mmfc06:79. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.