IDEAS home Printed from https://ideas.repec.org/a/spr/jbuscr/v14y2018i1d10.1007_s41549-018-0027-z.html
   My bibliography  Save this article

Large Shocks and the Business Cycle: The Effect of Outlier Adjustments

Author

Listed:
  • Yoshihiro Ohtsuka

    (Tohoku Gakuin University)

Abstract

This study examines the impact of outlier-adjusted data on business cycle inferences using coincident indicators of the composite index (CI) in Japan. To estimate the CI and business cycles, this study proposes a Markov switching dynamic factor model incorporating Student’s t-distribution in both the idiosyncratic noise and the factor equation. Furthermore, the model includes a stochastic volatility process to identify whether a large shock is associated with a business cycle. From the empirical analysis, both the factor and the idiosyncratic component have fat-tail error distributions, and the estimated CI and recession probabilities are close to those published by the Economic and Social Research Institute. Compared with the estimated CI using the adjusted data set, the outlier adjustment reduces the depth of the recession. Moreover, the results of the shock decomposition show that the financial crisis in mid-2008 was caused by increase of clustering shocks and large unexpected shocks. In contrast, the Great East Japan Earthquake in 2011 was derived from idiosyncratic noise and did not cause a recession. When analyzing whether to use a sample that includes outliers associated with the business cycle, it is not desirable to use the outlier-adjusted data set.

Suggested Citation

  • Yoshihiro Ohtsuka, 2018. "Large Shocks and the Business Cycle: The Effect of Outlier Adjustments," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 143-178, April.
  • Handle: RePEc:spr:jbuscr:v:14:y:2018:i:1:d:10.1007_s41549-018-0027-z
    DOI: 10.1007/s41549-018-0027-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41549-018-0027-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41549-018-0027-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Lucrezia Reichlin & Giovanni Veronese, 2001. "The construction of coincident and leading indicators for the euro area business cycler of the euro area business cycle," Temi di discussione (Economic working papers) 434, Bank of Italy, Economic Research and International Relations Area.
    3. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    4. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    5. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    6. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    7. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    8. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    9. Watanabe, Toshiaki, 2003. "Measuring Business Cycle Turning Points in Japan with a Dynamic Markov Switching Factor Model," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 21(1), pages 35-68, February.
    10. Ascari, Guido & Fagiolo, Giorgio & Roventini, Andrea, 2015. "Fat-Tail Distributions And Business-Cycle Models," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 465-476, March.
    11. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    12. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    13. Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
    14. Watanabe, Toshiaki, 2014. "Bayesian Analysis of Business Cycle in Japan Using Markov Switching Model with Stochastic Volatility and Fat-tail Distribution," Economic Review, Hitotsubashi University, vol. 65(2), pages 156-167, April.
    15. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    16. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    17. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    18. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    19. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    20. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    21. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    22. Jouchi Nakajima & Toshiaki Watanabe, 2011. "Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model with the Ordering of Variables for the Japanese Economy and Monetary Policy," Global COE Hi-Stat Discussion Paper Series gd11-196, Institute of Economic Research, Hitotsubashi University.
    23. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    24. Joshua C. C. Chan & Angelia L. Grant, 2016. "On the Observed-Data Deviance Information Criterion for Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 772-802.
    25. Watanabe, Toshiaki, 2001. "On sampling the degree-of-freedom of Student's-t disturbances," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 177-181, April.
    26. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    27. Toshiaki Watanabe, 2004. "A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997)," Biometrika, Biometrika Trust, vol. 91(1), pages 246-248, March.
    28. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    29. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    30. Filippo Altissimo & Antonio Bassanetti & Riccardo Cristadoro & Mario Forni & Marco Lippi & Lucrezia Reichlin & Giovanni Veronese, 2001. "A real time coincident indicator of the euro area business cycle," Temi di discussione (Economic working papers) 436, Bank of Italy, Economic Research and International Relations Area.
    31. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    32. Shin-ichi Fukuda & Takashi Onodera, 2001. "A New Composite Index of Coincident Economic Indicators in Japan: How can we improve the forecast performance? ," CIRJE F-Series CIRJE-F-101, CIRJE, Faculty of Economics, University of Tokyo.
    33. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    34. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    35. Motonari Hayashida & Geoffrey J. D. Hewings, 2009. "Regional Business Cycles in Japan," International Regional Science Review, , vol. 32(2), pages 119-147, April.
    36. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    37. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," Working Papers halshs-02443364, HAL.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    5. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    6. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    7. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    8. Andrea Carriero & Massimiliano Marcellino, 2011. "Sectoral Survey‐based Confidence Indicators for Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 175-206, April.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Arias, Maria A. & Gascon, Charles S. & Rapach, David E., 2016. "Metro business cycles," Journal of Urban Economics, Elsevier, vol. 94(C), pages 90-108.
    11. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    12. Arabinda Basistha, "undated". "Estimates of Quarterly and Monthly Episodes of Global Recessions: Evidence from Markov-switching Dynamic Factor Models," Working Papers 24-07, Department of Economics, West Virginia University.
    13. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    14. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    15. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    16. Andrea Carriero & Massimiliano Marcellino, 2007. "Monitoring the Economy of the Euro Area: A Comparison of Composite Coincident Indexes," Working Papers 319, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    18. Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
    19. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    20. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.

    More about this item

    Keywords

    Business cycle inference; Heavy-tailed distribution; Markov chain Monte Carlo (MCMC); Markov switching dynamic factor model; Stochastic volatility;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbuscr:v:14:y:2018:i:1:d:10.1007_s41549-018-0027-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.