IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-905320150000035009.html
   My bibliography  Save this book chapter

Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement

In: Dynamic Factor Models

Author

Listed:
  • Laura E. Jackson
  • M. Ayhan Kose
  • Christopher Otrok
  • Michael T. Owyang

Abstract

We compare methods to measure comovement in business cycle data using multi-level dynamic factor models. To do so, we employ a Monte Carlo procedure to evaluate model performance for different specifications of factor models across three different estimation procedures. We consider three general factor model specifications used in applied work. The first is a single-factor model, the second a two-level factor model, and the third a three-level factor model. Our estimation procedures are the Bayesian approach of Otrok and Whiteman (1998), the Bayesian state-space approach of Kim and Nelson (1998) and a frequentist principal components approach. The latter serves as a benchmark to measure any potential gains from the more computationally intensive Bayesian procedures. We then apply the three methods to a novel new dataset on house prices in advanced and emerging markets from Cesa-Bianchi, Cespedes, and Rebucci (2015) and interpret the empirical results in light of the Monte Carlo results.

Suggested Citation

  • Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Eric Hillebrand & Siem Jan Koopman (ed.),Dynamic Factor Models, volume 35, pages 361-400, Emerald Publishing Ltd.
  • Handle: RePEc:eme:aecozz:s0731-905320150000035009
    as

    Download full text from publisher

    File URL: http://www.emeraldinsight.com/10.1108/S0731-905320150000035009?utm_campaign=RePEc&WT.mc_id=RePEc
    Download Restriction: Access to full text is restricted to subscribers

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hideaki Hirata & M. Ayhan Kose & Christopher Otrok & Marco E Terrones, 2013. "Global House Price Fluctuations: Synchronization and Determinants," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 9(1), pages 119-166.
    2. Otrok, Christopher & Whiteman, Charles H, 1998. "Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 997-1014, November.
    3. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    4. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    5. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    6. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    7. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 453-473.
    8. Ambrogio Cesa‐Bianchi & Luis Felipe Cespedes & Alessandro Rebucci, 2015. "Global Liquidity, House Prices, and the Macroeconomy: Evidence from Advanced and Emerging Economies," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(S1), pages 301-335, March.
    9. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphael A. Auer & Andrei A. Levchenko & Philip Sauré, 2019. "International Inflation Spillovers through Input Linkages," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 507-521, July.
    2. Jackson, Laura E. & Owyang, Michael T. & Zubairy, Sarah, 2018. "Debt and stabilization policy: Evidence from a Euro Area FAVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 67-91.
    3. Krzysztof Beck & Piotr Stanek, 2019. "Globalization or Regionalization of Stock Markets? the Case of Central and Eastern European Countries," Eastern European Economics, Taylor & Francis Journals, vol. 57(4), pages 317-330, July.
    4. Shiyi Wang, 2019. "Capital Flow Volatility: The Effects of Financial Development and Global Financial Conditions," 2019 Papers pwa945, Job Market Papers.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

    More about this item

    Keywords

    Principal components; Kalman filter; data augmentation; business cycles; C3; C18; C32; E32;

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-905320150000035009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Charlotte Maiorana). General contact details of provider: http://www.emeraldinsight.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.