IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/376.html
   My bibliography  Save this paper

The changing role of expectations in US monetary policy: A new look using the Livingston Survey

Author

Listed:
  • Banerjee, A.
  • Malik, S.

Abstract

Using a Bayesian structural vector autoregression (TVP-SVAR) with time-varying parameters and volatility we investigate monetary policy in the United States, in particular its interaction with the formation of inflation expectations and the linkages between monetary policy, inflation expectations and the behaviour of CPI inflation. We use Livingston Survey data for expected inflation, measured at a bi-annual frequency, actual inflation, unemployment and a nominal interest rate to estimate the VAR and show the significant changes that have occurred in the responses of these variables to monetary policy shocks or to shocks to expected and actual inflation. In so doing, we generalize the analysis undertaken by Leduc, Sill and Stark (2007) to allow for a more nuanced and detailed look at questions such as the impact of different chairmanship regimes at the Federal Reserve Board, the role of good policy versus good luck, and second round inflation effects. While some of the questions asked have a relatively long history, the methods used to undertake our investigations are very new, and the time-varying structure allows us to offer a more detailed picture. In using these methods we also undertake a substantial technical discussion to unearth the appropriateness of the TVP-SVAR models hitherto estimated in the literature, in particular the role of the choice of priors in determining the outcome of the estimations. As we discuss in the paper, this is an important issue which has remained rather hidden in the discussions surrounding the estimation of TVP-SVARs, yet may have a substantially important role to play in determining the results obtained.

Suggested Citation

  • Banerjee, A. & Malik, S., 2012. "The changing role of expectations in US monetary policy: A new look using the Livingston Survey," Working papers 376, Banque de France.
  • Handle: RePEc:bfr:banfra:376
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/working-paper_376_2012.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    2. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    3. Leduc, Sylvain & Sill, Keith & Stark, Tom, 2007. "Self-fulfilling expectations and the inflation of the 1970s: Evidence from the Livingston Survey," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 433-459, March.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. N. Gregory Mankiw, 2001. "U.S. Monetary Policy During the 1990s," NBER Working Papers 8471, National Bureau of Economic Research, Inc.
    6. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    7. Markus Kirchner & Jacopo Cimadomo & Sebastian Hauptmeier, 2010. "Transmission of Government Spending Shocks in the Euro Area: Time Variation and Driving Forces," Tinbergen Institute Discussion Papers 10-021/2, Tinbergen Institute.
    8. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    9. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    10. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    11. Benjamin M. Friedman, 2006. "The Greenspan Era: Discretion, Rather than Rules," American Economic Review, American Economic Association, vol. 96(2), pages 174-177, May.
    12. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    13. Benati, Luca & Mumtaz, Haroon, 2007. "U.S. evolving macroeconomic dynamics: a structural investigation," Working Paper Series 746, European Central Bank.
    14. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    15. Christina D. Romer & David H. Romer, 2004. "Choosing the Federal Reserve Chair: Lessons from History," Journal of Economic Perspectives, American Economic Association, vol. 18(1), pages 129-162, Winter.
    16. Benjamin M. Friedman, 2006. "The Greenspan Era: Discretion, Rather Than Rules," NBER Working Papers 12118, National Bureau of Economic Research, Inc.
    17. Watanabe, Toshiaki, 2000. "Bayesian Analysis of Dynamic Bivariate Mixture Models: Can They Explain the Behavior of Returns and Trading Volume?," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 199-210, April.
    18. Ireland, Peter N, 1996. "The Role of Countercyclical Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 104(4), pages 704-723, August.
    19. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    20. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    21. Toshiaki Watanabe, 2004. "A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997)," Biometrika, Biometrika Trust, vol. 91(1), pages 246-248, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Owusu-Sekyere, 2016. "The impact of monetary policy on household consumption in South Africa. Evidence from Vector Autoregressive Techniques," Working Papers 598, Economic Research Southern Africa.
    2. Chance Ngamanya Mwabutwa & Nicola Viegi & Manoel Bittencourt, 2016. "Evolution Of Monetary Policy Transmission Mechanism In Malawi: A Tvp-Var Approach," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 41(1), pages 33-55, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Franta, 2011. "Identification of Monetary Policy Shocks in Japan Using Sign Restrictions within the TVP-VAR Framework," IMES Discussion Paper Series 11-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
    2. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    3. Haque, Qazi & Magnusson, Leandro M., 2021. "Uncertainty shocks and inflation dynamics in the U.S," Economics Letters, Elsevier, vol. 202(C).
    4. Clark, Todd E. & Davig, Troy, 2011. "Decomposing the declining volatility of long-term inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 981-999, July.
    5. Eddie Gerba & Klemens Hauzenberger, 2013. "Estimating US Fiscal and Monetary Interactions in a Time Varying VAR," Studies in Economics 1303, School of Economics, University of Kent.
    6. Qazi Haque & Leandro M. Magnusson & Kazuki Tomioka, 2021. "Empirical Evidence on the Dynamics of Investment Under Uncertainty in the U.S," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1193-1217, October.
    7. Jebabli, Ikram & Arouri, Mohamed & Teulon, Frédéric, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility," Energy Economics, Elsevier, vol. 45(C), pages 66-98.
    8. Nakajima, Jouchi & Kasuya, Munehisa & Watanabe, Toshiaki, 2011. "Bayesian analysis of time-varying parameter vector autoregressive model for the Japanese economy and monetary policy," Journal of the Japanese and International Economies, Elsevier, vol. 25(3), pages 225-245, September.
    9. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    10. Arratibel, Olga & Michaelis, Henrike, 2013. "The Impact of Monetary Policy and Exchange Rate Shocks in Poland: Evidence from a Time-Varying VAR," Discussion Papers in Economics 21088, University of Munich, Department of Economics.
    11. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    12. Christiane Baumeister & Eveline Durinck & Gert Peersman, 2008. "Liquidity, Inflation and Asset Prices in a Time-Varying Framework for the Euro Area," Discussion Papers 08/06, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    13. Boubekeur Baba & Güven Sevil, 2021. "Bayesian analysis of time-varying interactions between stock returns and foreign equity flows," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-25, December.
    14. Dahem, Ahlem & Skander, Slim & Fatma, Siala Guermazi, 2017. "Time Varying VAR Analysis for Disaggregated Exchange Rate Pass-through in Tunisia," MPRA Paper 79759, University Library of Munich, Germany, revised 2017.
    15. Morita, Hiroshi, 2015. "Japanese Fiscal Policy under the Zero Lower Bound of Nominal Interest Rates: Time-Varying Parameters Vector Autoregression," Discussion Paper Series 627, Institute of Economic Research, Hitotsubashi University.
    16. Michaelis, Henrike & Watzka, Sebastian, 2017. "Are there differences in the effectiveness of quantitative easing at the zero-lower-bound in Japan over time?," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 204-233.
    17. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
    18. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
    19. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    20. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.

    More about this item

    Keywords

    monetary policy; expectations; inflation; time variation; VARs; impulse responses.;
    All these keywords.

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.