IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v40y2025i2p111-130.html
   My bibliography  Save this article

Analysis of Upstream, Downstream, and Common Firm Shocks Using a Large Factor‐Augmented Vector Autoregressive Approach

Author

Listed:
  • Everett Grant
  • Julieta Yung

Abstract

We evaluate the roles of upstream (supplier‐to‐user), downstream (user‐to‐supplier), and common factor shock transmission across firms by deriving interfirm networks and common factors from US equities over 1989–2017. We overcome the econometric challenges of estimating the large factor‐augmented vector autoregressive (FAVAR) system by developing two alternative approaches: one prioritizing computational efficiency and the other providing the full posterior distribution of all model parameters and factors. We find that (i) common factors drive an increasing variance share of returns, (ii) supplier shocks are more evident in equity price movements than downstream exposures, and (iii) removing the impact of common factors is increasingly important for revealing interfirm connections.

Suggested Citation

  • Everett Grant & Julieta Yung, 2025. "Analysis of Upstream, Downstream, and Common Firm Shocks Using a Large Factor‐Augmented Vector Autoregressive Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(2), pages 111-130, March.
  • Handle: RePEc:wly:japmet:v:40:y:2025:i:2:p:111-130
    DOI: 10.1002/jae.3100
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3100
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    2. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. anonymous, 2002. "FedACH consolidation completed," Financial Update, Federal Reserve Bank of Atlanta, vol. 15(Apr), pages 1-2.
    5. Andrew B. Bernard & Emmanuel Dhyne & Glenn Magerman & Kalina Manova & Andreas Moxnes, 2022. "The Origins of Firm Heterogeneity: A Production Network Approach," Journal of Political Economy, University of Chicago Press, vol. 130(7), pages 1765-1804.
    6. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
    7. Hale, Galina & Lopez, Jose A., 2019. "Monitoring banking system connectedness with big data," Journal of Econometrics, Elsevier, vol. 212(1), pages 203-220.
    8. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    9. Julian di Giovanni & Andrei A. Levchenko, 2010. "Putting the Parts Together: Trade, Vertical Linkages, and Business Cycle Comovement," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(2), pages 95-124, April.
    10. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    11. Jean-Noël Barrot & Julien Sauvagnat, 2016. "Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(3), pages 1543-1592.
    12. Alexei Onatski & Francisco Ruge‐Murcia, 2013. "Factor Analysis Of A Large Dsge Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 903-928, September.
    13. Bridgman, Benjamin, 2012. "The rise of vertical specialization trade," Journal of International Economics, Elsevier, vol. 86(1), pages 133-140.
    14. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    15. David Rezza Baqaee, 2018. "Cascading Failures in Production Networks," Econometrica, Econometric Society, vol. 86(5), pages 1819-1838, September.
    16. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    17. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    18. David Rezza Baqaee & Emmanuel Farhi, 2019. "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem," Econometrica, Econometric Society, vol. 87(4), pages 1155-1203, July.
    19. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    20. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    21. Ng, Eric C.Y., 2010. "Production fragmentation and business-cycle comovement," Journal of International Economics, Elsevier, vol. 82(1), pages 1-14, September.
    22. Jorge Miranda Pinto, 2021. "Production Network Structure, Service Share, and Aggregate Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 39, pages 146-173, January.
    23. Charles I. Jones, 2011. "Intermediate Goods and Weak Links in the Theory of Economic Development," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 1-28, April.
    24. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    25. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    26. Shea, John S, 2002. "Complementarities and Comovements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 412-433, May.
    27. Cochrane, John H., 1991. "Volatility tests and efficient markets : A review essay," Journal of Monetary Economics, Elsevier, vol. 27(3), pages 463-485, June.
    28. Brownlees, Christian & Hans, Christina & Nualart, Eulalia, 2021. "Bank credit risk networks: Evidence from the Eurozone," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 585-599.
    29. Robert C. Johnson, 2014. "Trade in Intermediate Inputs and Business Cycle Comovement," American Economic Journal: Macroeconomics, American Economic Association, vol. 6(4), pages 39-83, October.
    30. Fama, Eugene F & French, Kenneth R, 1995. "Size and Book-to-Market Factors in Earnings and Returns," Journal of Finance, American Finance Association, vol. 50(1), pages 131-155, March.
    31. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    32. Guðmundsson, Guðmundur Stefán & Brownlees, Christian, 2021. "Detecting groups in large vector autoregressions," Journal of Econometrics, Elsevier, vol. 225(1), pages 2-26.
    33. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    34. Everett Grant & Julieta Yung, 2021. "The double‐edged sword of global integration: Robustness, fragility, and contagion in the international firm network," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 760-783, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Everett Grant & Julieta Yung, 2019. "Upstream, Downstream & Common Firm Shocks," Globalization Institute Working Papers 360, Federal Reserve Bank of Dallas.
    2. Kristina Barauskaite & Anh Dinh Minh Nguyen, 2021. "Direct and network effects of idiosyncratic TFP shocks," Empirical Economics, Springer, vol. 60(6), pages 2765-2793, June.
    3. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    4. Dong, Feng & Wen, Yi, 2019. "Long and Plosser meet Bewley and Lucas," Journal of Monetary Economics, Elsevier, vol. 102(C), pages 70-92.
    5. Baqaee, David Rezza & Farhi, Emmanuel, 2018. "Macroeconomics with Heterogeneous Agents and Input-Output Networks," CEPR Discussion Papers 13006, C.E.P.R. Discussion Papers.
    6. Imbs, Jean & Pauwels, Laurent, 2019. "Fundamental Moments," CEPR Discussion Papers 13662, C.E.P.R. Discussion Papers.
    7. Eva F. Janssens & Robin L. Lumsdaine, 2024. "Sectoral slowdowns in the United Kingdom: Evidence from transmission probabilities and economic linkages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 22-40, January.
    8. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    9. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    10. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    11. Emmanuel Dhyne & Ayumu Ken Kikkawa & Glenn Magerman, 2022. "Imperfect Competition in Firm-to-Firm Trade," Journal of the European Economic Association, European Economic Association, vol. 20(5), pages 1933-1970.
    12. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    13. Julian di Giovanni & Andrei A. Levchenko & Isabelle Mejean, 2024. "Foreign Shocks as Granular Fluctuations," Journal of Political Economy, University of Chicago Press, vol. 132(2), pages 391-433.
    14. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    15. Jiahe Lin & George Michailidis, 2019. "Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models," Papers 1912.04146, arXiv.org, revised May 2020.
    16. Buchen, Teresa, 2014. "News Media, Common Information, and Sectoral Comovement," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100391, Verein für Socialpolitik / German Economic Association.
    17. Alonso de Gortari, 2018. "Disentangling Global Value Chains," 2018 Meeting Papers 139, Society for Economic Dynamics.
    18. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016. "Structural analysis with Multivariate Autoregressive Index models," Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
    19. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    20. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:40:y:2025:i:2:p:111-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.