IDEAS home Printed from https://ideas.repec.org/p/anc/wpaper/498.html
   My bibliography  Save this paper

Investigating commodity price interdependence with grancer causality networks

Author

Listed:
  • Roberto Esposti

    (Department of Economics and Social Sciences, Universita' Politecnica delle Marche (UNIVPM))

Abstract

This paper investigates the interdependence among prices in the commodity and natural resource market segment. The analysis is performed using a large dataset made of about 50 commodity prices observed with monthly frequency over a period of almost half a century (1980-2024). These different commodities are clustered in five groups (energy, metals, agriculture, food, other raw materials) in order to discriminate the interdependence within and between groups. The adopted method consists in building a Commodity Price Network (CPN) defined via Granger causality tests. These tests are performed with two alternative empirical strategies: pairwise VAR models estimation (pairwise Granger Causality) and sparse VAR models estimation (sparse VAR Granger Causality). Both price levels and price first differences are considered in order to take the possible non-stationarity or price series into account. Network analysis is performed on the different networks obtained using these alternative series and modelling approaches. Results suggest relevant differences across series and methods but some solid results also emerges, particularly pointing to a generalized interdependence that still assigns a central role to some metals and agricultural products.

Suggested Citation

  • Roberto Esposti, 2025. "Investigating commodity price interdependence with grancer causality networks," Working Papers 498, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  • Handle: RePEc:anc:wpaper:498
    as

    Download full text from publisher

    File URL: http://docs.dises.univpm.it/web/quaderni/pdf/498.pdf
    File Function: First version, 2025
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Christopher F Baum, 2005. "Stata: The language of choice for time-series analysis?," Stata Journal, StataCorp LLC, vol. 5(1), pages 46-63, March.
    4. Esposti, Roberto, 2021. "On the long-term common movement of resource and commodity prices.A methodological proposal," Resources Policy, Elsevier, vol. 72(C).
    5. Ding, Shusheng & Cui, Tianxiang & Zheng, Dandan & Du, Min, 2021. "The effects of commodity financialization on commodity market volatility," Resources Policy, Elsevier, vol. 73(C).
    6. Tiago V. De V. Cavalcanti & Kamiar Mohaddes & Mehdi Raissi, 2015. "Commodity Price Volatility and the Sources of Growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(6), pages 857-873, September.
    7. Puneet Vatsa & Dragan Miljkovic & Jungho Baek, 2023. "Linkages between natural gas, fertiliser and cereal prices: A note," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(3), pages 935-940, September.
    8. Christopher F Baum & Jesús Otero, 2022. "Erratum: Unit-root tests for explosive behavior," Stata Journal, StataCorp LLC, vol. 22(1), pages 234-237, March.
    9. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    10. Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Commodity Connectedness," Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136, Central Bank of Chile.
    11. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    12. Yamada, Hiroshi & Toda, Hiro Y., 1998. "Inference in possibly integrated vector autoregressive models: some finite sample evidence," Journal of Econometrics, Elsevier, vol. 86(1), pages 55-95, June.
    13. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    14. Roberto Esposti & Giulia Listorti, 2013. "Agricultural price transmission across space and commodities during price bubbles," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 125-139, January.
    15. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    16. Mihai Ioan Mutascu & Claudiu Tiberiu Albulescu & Nicholas Apergis & Cosimo Magazzino, 2022. "Do gasoline and diesel prices co-move? Evidence from the time–frequency domain," Post-Print hal-03858096, HAL.
    17. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    18. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    19. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2022. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Resources Policy, Elsevier, vol. 77(C).
    20. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    21. Krzysztof Drachal & Michał Pawłowski, 2024. "Forecasting Selected Commodities’ Prices with the Bayesian Symbolic Regression," IJFS, MDPI, vol. 12(2), pages 1-56, March.
    22. Loretta Mastroeni & Alessandro Mazzoccoli & Greta Quaresima & Pierluigi Vellucci, 2021. "Wavelet analysis and energy-based measures for oil-food price relationship as a footprint of financialisation effect," Papers 2104.11891, arXiv.org, revised Mar 2022.
    23. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    24. Boako, Gideon & Alagidede, Imhotep P., 2020. "Commodities Price Cycles and their Interdependence with Equity Markets in Africa," Working Papers d188baf5-6ada-45b1-91da-6, African Economic Research Consortium.
    25. Kees Jan van Garderen, 2023. "Forecasting Levels in Loglinear Unit Root Models," Econometric Reviews, Taylor & Francis Journals, vol. 42(9-10), pages 780-805, November.
    26. Dvoskin, Dan & Heady, Earl O., 1977. "Commodity Prices And Resource Use Under Various Energy Alternatives In Agriculture," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 2, pages 1-10, December.
    27. Nigatu, Getachew & Adjemian, Michael, 2020. "A Wavelet Analysis of Price Integration in Major Agricultural Markets," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 52(1), pages 117-134, February.
    28. Will Devlin & Sarah Woods & Brendan Coates, 2011. "Commodity price volatility," Economic Roundup, The Treasury, Australian Government, issue 1, pages 1-12, April.
    29. Francisco Roch, 2019. "The adjustment to commodity price shocks," Journal of Applied Economics, Taylor & Francis Journals, vol. 22(1), pages 437-467, January.
    30. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    31. Ernest Owusu Boakye & Kari Heimonen & Juha Junttila, 2024. "Commodity markets and the global macroeconomy: evidence from machine learning and GVAR," Empirical Economics, Springer, vol. 67(5), pages 1919-1965, November.
    32. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    33. Aharon, David Y. & Azman Aziz, Mukhriz Izraf & Kallir, Ido, 2023. "Oil price shocks and inflation: A cross-national examination in the ASEAN5+3 countries," Resources Policy, Elsevier, vol. 82(C).
    34. Alessandro Marra & Marco Cucculelli & Alfredo Cartone, 2024. "So far, yet so close. Using networks of words to measure proximity and spillovers between firms," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 14(4), pages 973-1000, December.
    35. Joseph P Byrne & Ryuta Sakemoto & Bing Xu, 2020. "Commodity price co-movement: heterogeneity and the time-varying impact of fundamentals [Oil price shocks and the stock market: evidence from Japan]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 499-528.
    36. Listorti, Giulia & Esposti, Roberto, . "Horizontal Price Transmission in Agricultural Markets: Fundamental Concepts and Open Empirical Issues," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(01), pages 1-28.
    37. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    38. Crain, Susan J & Lee, Jae Ha, 1996. "Volatility in Wheat Spot and Futures Markets, 1950-1993: Government Farm Programs, Seasonality, and Causality," Journal of Finance, American Finance Association, vol. 51(1), pages 325-343, March.
    39. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    40. Wang, Gang-Jin & Si, Hui-Bin & Chen, Yang-Yang & Xie, Chi & Chevallier, Julien, 2021. "Time domain and frequency domain Granger causality networks: Application to China’s financial institutions," Finance Research Letters, Elsevier, vol. 39(C).
    41. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    42. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    43. Chiou-Wei, Song Zan & Chen, Ching-Fu & Zhu, Zhen, 2008. "Economic growth and energy consumption revisited -- Evidence from linear and nonlinear Granger causality," Energy Economics, Elsevier, vol. 30(6), pages 3063-3076, November.
    44. Lutkepohl, Helmut, 1982. "Non-causality due to omitted variables," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 367-378, August.
    45. Derick Quintino & José Telo da Gama & Paulo Ferreira, 2021. "Cross-Correlations in Meat Prices in Brazil: A Non-Linear Approach Using Different Time Scales," Economies, MDPI, vol. 9(4), pages 1-12, September.
    46. Zhao, Zhao & Wen, Huwei & Li, Ke, 2021. "Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China," Economic Modelling, Elsevier, vol. 94(C), pages 780-788.
    47. Dabin Wang & William G. Tomek, 2007. "Commodity Prices and Unit Root Tests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(4), pages 873-889.
    48. Opeoluwa Adeniyi Adeosun & Richard Olaolu Olayeni & Mosab I. Tabash & Suhaib Anagreh, 2023. "Revisiting the Oil and Food Prices Dynamics: A Time Varying Approach," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(3), pages 275-309, November.
    49. Esposti, Roberto, 2024. "Dating common commodity price and inflation shocks with alternative approaches," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 13(2), July.
    50. Jesús Otero & Christopher F Baum, 2021. "Unit-root tests for explosive behavior," Stata Journal, StataCorp LLC, vol. 21(4), pages 999-1020, December.
    51. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    52. Shuping Shi & Stan Hurn & Peter C B Phillips, 2020. "Causal Change Detection in Possibly Integrated Systems: Revisiting the Money–Income Relationship [Energy Consumption and Economic Growth in the United States]," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 18(1), pages 158-180.
    53. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    54. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    55. Miljkovic, Dragan & Vatsa, Puneet, 2023. "On the linkages between energy and agricultural commodity prices: A dynamic time warping analysis," International Review of Financial Analysis, Elsevier, vol. 90(C).
    56. Boako, Gideon & Alagidede, Imhotep Paul & Sjo, Bo & Uddin, Gazi Salah, 2020. "Commodities price cycles and their interdependence with equity markets," Energy Economics, Elsevier, vol. 91(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Esposti, 2022. "Who Moves First? Commodity Price Interdependence Through Time-Varying Granger Causality," Working Papers 471, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Esposti, Roberto, 2024. "Dating common commodity price and inflation shocks with alternative approaches," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 13(2), July.
    3. Ms. Adina Popescu & Ms. Alina Carare, 2011. "Monetary Policy and Risk-Premium Shocks in Hungary: Results from a Large Bayesian VAR," IMF Working Papers 2011/259, International Monetary Fund.
    4. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016. "Structural analysis with Multivariate Autoregressive Index models," Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
    5. Everett Grant & Julieta Yung, 2025. "Analysis of Upstream, Downstream, and Common Firm Shocks Using a Large Factor‐Augmented Vector Autoregressive Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(2), pages 111-130, March.
    6. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    7. Sofia Velasco, 2025. "Let the Tree Decide: FABART A Non-Parametric Factor Model," Papers 2506.11551, arXiv.org.
    8. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    9. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    10. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    11. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    12. Florian Huber & Manfred M. Fischer, 2018. "A Markov Switching Factor‐Augmented VAR Model for Analyzing US Business Cycles and Monetary Policy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(3), pages 575-604, June.
    13. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    14. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    15. Kemal Bagzibagli, 2014. "Monetary transmission mechanism and time variation in the Euro area," Empirical Economics, Springer, vol. 47(3), pages 781-823, November.
    16. Auer, Simone, 2019. "Monetary policy shocks and foreign investment income: Evidence from a large Bayesian VAR," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 142-166.
    17. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    18. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    19. Jiahe Lin & George Michailidis, 2019. "Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models," Papers 1912.04146, arXiv.org, revised May 2020.
    20. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anc:wpaper:498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maurizio Mariotti (email available below). General contact details of provider: https://edirc.repec.org/data/deancit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.