IDEAS home Printed from https://ideas.repec.org/p/uts/ecowps/2019-08.html
   My bibliography  Save this paper

The multivariate simultaneous unobserved components model and identification via heteroskedasticity

Author

Listed:
  • Mengheng Li

    () (University of Technology Sydney)

  • Ivan Mendieta-Munoz

    () (University of Utah)

Abstract

We propose a multivariate simultaneous unobserved components framework to determine the two-sided interactions between structural trend and cycle innovations. We relax the standard assumption in unobserved components models that trends are only driven by permanent shocks and cycles are only driven by transitory shocks by considering the possible spillover effects between structural innovations. The direction of spillover has a structural interpretation, whose identification is achieved via heteroskedasticity. We provide identifiability conditions and develop an efficient Bayesian MCMC procedure for estimation. Empirical implementations for both Okun’s law and the Phillips curve show evidence of significant spillovers between trend and cycle components.

Suggested Citation

  • Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:ecowps:2019/08
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/2019-06/Mengheng%20working%20paper.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. James C. Morley, 2007. "The Slow Adjustment of Aggregate Consumption to Permanent Income," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 615-638, March.
    2. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    3. Arabinda Basistha, 2007. "Trend-cycle correlation, drift break and the estimation of trend and cycle in Canadian GDP," Canadian Journal of Economics, Canadian Economics Association, vol. 40(2), pages 584-606, May.
    4. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    5. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    6. Guido Ascari & Tiziano Ropele, 2009. "Trend Inflation, Taylor Principle, and Indeterminacy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(8), pages 1557-1584, December.
    7. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    8. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    9. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    10. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    11. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    12. Netsunajev, Aleksei, 2013. "Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 51-62.
    13. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    14. Dominik Bertsche & Robin Braun, 2017. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2017-11, Department of Economics, University of Konstanz.
    15. George Athanasopoulos & Donald S. Poskitt & Farshid Vahid & Wenying Yao, 2016. "Determination of Long‐run and Short‐run Dynamics in EC‐VARMA Models via Canonical Correlations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1100-1119, September.
    16. Anufriev, Mikhail & Panchenko, Valentyn, 2015. "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 241-255.
    17. repec:taf:jnlbes:v:34:y:2016:i:4:p:574-589 is not listed on IDEAS
    18. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    19. Warne, Anders & Droumaguet, Matthieu & Woźniak, Tomasz, 2015. "Granger causality and regime inference in Bayesian Markov-Switching VARs," Working Paper Series 1794, European Central Bank.
    20. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    21. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    22. Trenkler, Carsten & Weber, Enzo, 2016. "On the identification of multivariate correlated unobserved components models," Economics Letters, Elsevier, vol. 138(C), pages 15-18.
    23. Blanchard, Oliver & Cerutti, Eugenio & SUmmers, Lawrence, 2015. "Inflation and Activity - Two Explorations and Their Monetary Policy Implications," Working Paper Series 15-070, Harvard University, John F. Kennedy School of Government.
    24. Arabinda Basistha & Richard Startz, 2008. "Measuring the NAIRU with Reduced Uncertainty: A Multiple-Indicator Common-Cycle Approach," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 805-811, November.
    25. Holston, Kathryn & Laubach, Thomas & Williams, John C., 2017. "Measuring the natural rate of interest: International trends and determinants," Journal of International Economics, Elsevier, vol. 108(S1), pages 59-75.
    26. Charemza, Wojciech W. & Syczewska, Ewa M., 1998. "Joint application of the Dickey-Fuller and KPSS tests," Economics Letters, Elsevier, vol. 61(1), pages 17-21, October.
    27. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    28. Lance A. Fisher & Hyeon‐Seung Huh & Adrian R. Pagan, 2016. "Econometric Methods for Modelling Systems With a Mixture of i(1) and i(0) Variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(5), pages 892-911, August.
    29. Mitra, Sinchan & Sinclair, Tara M., 2012. "Output Fluctuations In The G-7: An Unobserved Components Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 16(03), pages 396-422, June.
    30. John W. Keating, 2013. "Interpreting Permanent Shocks to Output When Aggregate Demand May Not Be Neutral in the Long Run," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(4), pages 747-756, June.
    31. Tara M. Sinclair, 2009. "The Relationships between Permanent and Transitory Movements in U.S. Output and the Unemployment Rate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 529-542, March.
    32. Velinov, Anton & Chen, Wenjuan, 2015. "Do stock prices reflect their fundamentals? New evidence in the aftermath of the financial crisis," Journal of Economics and Business, Elsevier, vol. 80(C), pages 1-20.
    33. John W. Keating, 2013. "What Do We Learn from Blanchard and Quah Decompositions If Aggregate Demand May Not be Long-Run Neutral?," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201302, University of Kansas, Department of Economics.
    34. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    35. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    36. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    37. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    38. Markku Lanne & Jani Luoto, 2016. "Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression," CREATES Research Papers 2016-04, Department of Economics and Business Economics, Aarhus University.
    39. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    40. Dmitry Kulikov & Aleksei Netsunajev, 2013. "Identifying monetary policy shocks via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2013-9, Bank of Estonia, revised 09 Dec 2013.
    41. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    42. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    43. Andrew Harvey, 2011. "Modelling the Phillips curve with unobserved components," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 7-17.
    44. Enzo Weber, 2011. "Analyzing U.S. Output and the Great Moderation by Simultaneous Unobserved Components," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(8), pages 1579-1597, December.
    45. Thomas Laubach & John C. Williams, 2003. "Measuring the Natural Rate of Interest," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1063-1070, November.
    46. Bertsche, Dominik & Braun, Robin, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181631, Verein für Socialpolitik / German Economic Association.
    47. Keating, John W., 2013. "What do we learn from Blanchard and Quah decompositions of output if aggregate demand may not be long-run neutral?," Journal of Macroeconomics, Elsevier, vol. 38(PB), pages 203-217.
    48. Dungey, Mardi & Jacobs, Jan P.A.M. & Tian, Jing & van Norden, Simon, 2015. "Trend In Cycle Or Cycle In Trend? New Structural Identifications For Unobserved-Components Models Of U.S. Real Gdp," Macroeconomic Dynamics, Cambridge University Press, vol. 19(04), pages 776-790, June.
    49. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    50. repec:mcb:jmoncb:v:45:y:2013:i::p:747-756 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Unobserved components; identification via heteroskedasticity; trends and cycles; permanent and transitory shocks; state space models; spillover structural effects;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ecowps:2019/08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/edutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.