IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v31y2016i6p1100-1119.html

Determination of Long‐run and Short‐run Dynamics in EC‐VARMA Models via Canonical Correlations

Author

Listed:
  • George Athanasopoulos
  • Donald S. Poskitt
  • Farshid Vahid
  • Wenying Yao

Abstract

This article studies a simple, coherent approach for identifying and estimating error correcting vector autoregressive moving average (EC-VARMA) models. Canonical correlation analysis is implemented for both determining the cointegrating rank, using a strongly consistent method, and identifying the short-run VARMA dynamics, using the scalar component methodology. Finite sample performances are evaluated via Monte-Carlo simulations and the approach is applied to model and forecast US interest rates. The results reveal that EC-VARMA models generate significantly more accurate out-of-sample forecasts than vector error correction models (VECMs), especially for short horizons.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • George Athanasopoulos & Donald S. Poskitt & Farshid Vahid & Wenying Yao, 2016. "Determination of Long‐run and Short‐run Dynamics in EC‐VARMA Models via Canonical Correlations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1100-1119, September.
  • Handle: RePEc:wly:japmet:v:31:y:2016:i:6:p:1100-1119
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Mendieta-Munoz & Mengheng Li, 2019. "The Multivariate Simultaneous Unobserved Compenents Model and Identification via Heteroskedasticity," Working Paper Series, Department of Economics, University of Utah 2019_06, University of Utah, Department of Economics.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:31:y:2016:i:6:p:1100-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.