IDEAS home Printed from
   My bibliography  Save this article

Structural vector autoregressions with Markov switching


  • Lanne, Markku
  • Lütkepohl, Helmut
  • Maciejowska, Katarzyna


It is argued that in structural vector autoregressive (SVAR) analysis a Markov regime switching (MS) property can be exploited to identify shocks if the reduced form error covariance matrix varies across states. The model setup is formulated and discussed and it is shown how it can be used to test restrictions which are just-identifying in a standard structural vector autoregressive analysis. The approach is illustrated by two SVAR examples which have been reported in the literature and which have features that can be accommodated by the MS structure.

Suggested Citation

  • Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
  • Handle: RePEc:eee:dyncon:v:34:y:2010:i:2:p:121-131

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    4. Rapach, David E., 2001. "Macro shocks and real stock prices," Journal of Economics and Business, Elsevier, vol. 53(1), pages 5-26.
    5. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    6. Pagan, A.R. & Pesaran, M. Hashem, 2008. "Econometric analysis of structural systems with permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3376-3395, October.
    7. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    8. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    9. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    10. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics,in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148 Elsevier.
    11. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    12. Koop, G, 1992. "Aggregate Shocks and Macroeconomic Fluctuations: A Bayesian Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(4), pages 395-411, Oct.-Dec..
    13. Jon Faust, 1998. "The robustness of identified VAR conclusions about money," International Finance Discussion Papers 610, Board of Governors of the Federal Reserve System (U.S.).
    14. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    15. Ralf Brüggemann & Helmut Lütkepohl, 2005. "Uncovered Interest Rate Parity and the Expectations Hypothesis of the Term Structure: Empirical Results for the U.S. and Europe," SFB 649 Discussion Papers SFB649DP2005-035, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    17. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, June.
    18. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    19. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    20. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    21. Binswanger, Mathias, 2004. "How do stock prices respond to fundamental shocks?," Finance Research Letters, Elsevier, vol. 1(2), pages 90-99, June.
    22. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    23. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    24. Juan Francisco Rubio-Ramírez & Daniel F. Waggoner & Tao Zha, 2005. "Markov-switching structural vector autoregressions: theory and application," FRB Atlanta Working Paper 2005-27, Federal Reserve Bank of Atlanta.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Cointegration Markov regime switching model Vector error correction model Structural vector autoregression;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:34:y:2010:i:2:p:121-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.