IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v29y2014i3p479-496.html
   My bibliography  Save this article

Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars

Author

Listed:
  • Helmut Lütkepohl
  • Aleksei NetŠunajev

Abstract

SUMMARY Sign restrictions have become increasingly popular for identifying shocks in structural vector autoregressive (SVAR) models. So far there are no techniques for validating the shocks identified via such restrictions. Although in an ideal setting the sign restrictions specify shocks of interest, sign restrictions may be invalidated by measurement errors, data adjustments or omitted variables. We model changes in the volatility of the shocks via a Markov switching (MS) mechanism and use this device to give the data a chance to object to sign restrictions. The approach is illustrated by considering a small model for the market of crude oil. Earlier findings that oil supply shocks explain only a very small fraction of movements in the price of oil are confirmed and it is found that the importance of aggregate demand shocks for oil price movements has declined since the mid 1980s. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Helmut Lütkepohl & Aleksei NetŠunajev, 2014. "Disentangling Demand And Supply Shocks In The Crude Oil Market: How To Check Sign Restrictions In Structural Vars," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 479-496, April.
  • Handle: RePEc:wly:japmet:v:29:y:2014:i:3:p:479-496
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Helmut Lütkepohl, 2005. "New Introduction to Multiple Time Series Analysis," Springer Books, Springer, number 978-3-540-27752-1, January.
    3. Markku Lanne & Helmut Lütkepohl, 2008. "Identifying Monetary Policy Shocks via Changes in Volatility," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1131-1149, September.
    4. Renée Fry & Adrian Pagan, 2011. "Sign Restrictions in Structural Vector Autoregressions: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 938-960, December.
    5. Robert B. Barsky & Lutz Kilian, 2004. "Oil and the Macroeconomy Since the 1970s," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 115-134, Fall.
    6. Canova, Fabio, 2002. "Validating Monetary DSGE Models through VARs," CEPR Discussion Papers 3442, C.E.P.R. Discussion Papers.
    7. Fabio Canova & Evi Pappa, 2007. "Price Differentials in Monetary Unions: The Role of Fiscal Shocks," Economic Journal, Royal Economic Society, vol. 117(520), pages 713-737, April.
    8. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    9. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    10. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    11. Peersman, Gert & Van Robays, Ine, 2012. "Cross-country differences in the effects of oil shocks," Energy Economics, Elsevier, vol. 34(5), pages 1532-1547.
    12. Roberto Rigobon & Brian Sack, 2003. "Measuring The Reaction of Monetary Policy to the Stock Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 639-669.
    13. Normandin, Michel & Phaneuf, Louis, 2004. "Monetary policy shocks:: Testing identification conditions under time-varying conditional volatility," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1217-1243, September.
    14. Gert Peersman & Ine van Robays, 2009. "Oil and the Euro area economy [Labour market implications of EU product market integration]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(60), pages 603-651.
    15. Francesco Lippi & Andrea Nobili, 2012. "Oil And The Macroeconomy: A Quantitative Structural Analysis," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1059-1083, October.
    16. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    17. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    18. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    19. Gert Peersman & Roland Straub, 2009. "Technology Shocks And Robust Sign Restrictions In A Euro Area Svar," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 727-750, August.
    20. Canova, Fabio & Nicolo, Gianni De, 2002. "Monetary disturbances matter for business fluctuations in the G-7," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1131-1159, September.
    21. Bouakez, Hafedh & Normandin, Michel, 2010. "Fluctuations in the foreign exchange market: How important are monetary policy shocks?," Journal of International Economics, Elsevier, vol. 81(1), pages 139-153, May.
    22. Candelon, Bertrand & Lutkepohl, Helmut, 2001. "On the reliability of Chow-type tests for parameter constancy in multivariate dynamic models," Economics Letters, Elsevier, vol. 73(2), pages 155-160, November.
    23. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    24. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    25. Faust, Jon, 1998. "The robustness of identified VAR conclusions about money," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 207-244, December.
    26. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    27. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    28. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    29. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    30. Juan F. Rubio-Ramirez & Daniel F. Waggoner & Tao Zha, 2005. "Markov-switching structural vector autoregressions: theory and application," FRB Atlanta Working Paper 2005-27, Federal Reserve Bank of Atlanta.
    31. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    32. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities In The Oil Price–Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 337-363, November.
    33. Eleonora Granziera & Hyungsik Roger Moon & Frank Schorfheide, 2018. "Inference for VARs identified with sign restrictions," Quantitative Economics, Econometric Society, vol. 9(3), pages 1087-1121, November.
    34. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    35. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    36. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    37. Evi Pappa, 2009. "The Effects Of Fiscal Shocks On Employment And The Real Wage," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(1), pages 217-244, February.
    38. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    39. C. Baumeister & G. Peersman & -, 2010. "Sources of the Volatility Puzzle in the Crude Oil Market," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/634, Ghent University, Faculty of Economics and Business Administration.
    40. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    41. Benati, Luca & Mumtaz, Haroon, 2007. "U.S. evolving macroeconomic dynamics: a structural investigation," Working Paper Series 746, European Central Bank.
    42. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    43. Jacquier, Eric & Johannes, Michael & Polson, Nicholas, 2007. "MCMC maximum likelihood for latent state models," Journal of Econometrics, Elsevier, vol. 137(2), pages 615-640, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    2. Inoue, Atsushi & Kilian, Lutz, 2013. "Inference on impulse response functions in structural VAR models," Journal of Econometrics, Elsevier, vol. 177(1), pages 1-13.
    3. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    6. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    7. Lütkepohl, Helmut & Netšunajev, Aleksei, 2015. "Structural vector autoregressions with heteroskedasticity: A comparison of different volatility models," SFB 649 Discussion Papers 2015-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. repec:hum:wpaper:sfb649dp2015-015 is not listed on IDEAS
    9. Valcarcel, Victor J. & Wohar, Mark E., 2013. "Changes in the oil price-inflation pass-through," Journal of Economics and Business, Elsevier, vol. 68(C), pages 24-42.
    10. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with heteroskedasticity: A review of different volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 2-18.
    11. Dmitry Kulikov & Aleksei Netsunajev, 2016. "Identifying Shocks in Structural VAR models via heteroskedasticity: a Bayesian approach," Bank of Estonia Working Papers wp2015-8, Bank of Estonia, revised 19 Feb 2016.
    12. Lütkepohl, Helmut & Velinov, Anton, 2016. "Structural Vector Autoregressions : Checking Identifying Long-Run Restrictions via Heteroskedasticity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 30, pages 377-392.
    13. Lanne, Markku & Lütkepohl, Helmut & Maciejowska, Katarzyna, 2010. "Structural vector autoregressions with Markov switching," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 121-131, February.
    14. Helmut Lütkepohl, 2013. "Reducing confidence bands for simulated impulse responses," Statistical Papers, Springer, vol. 54(4), pages 1131-1145, November.
    15. Victor Pontines, 2021. "The real effects of loan-to-value limits: empirical evidence from Korea," Empirical Economics, Springer, vol. 61(3), pages 1311-1350, September.
    16. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    17. Emanuele Bacchiocchi & Efrem Castelnuovo & Luca Fanelli, 2014. "Gimme a break! Identification and estimation of the macroeconomic effects of monetary policy shocks in the U.S," "Marco Fanno" Working Papers 0181, Dipartimento di Scienze Economiche "Marco Fanno".
    18. Lutz Kilian & Daniel P. Murphy, 2012. "Why Agnostic Sign Restrictions Are Not Enough: Understanding The Dynamics Of Oil Market Var Models," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 1166-1188, October.
    19. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    20. Herwartz, Helmut & Plödt, Martin, 2014. "Sign restrictions and statistical identification under volatility breaks -- Simulation based evidence and an empirical application to monetary policy analysis," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100326, Verein für Socialpolitik / German Economic Association.
    21. repec:hum:wpaper:sfb649dp2014-009 is not listed on IDEAS
    22. Eleonora Granziera & Hyungsik Roger Moon & Frank Schorfheide, 2018. "Inference for VARs identified with sign restrictions," Quantitative Economics, Econometric Society, vol. 9(3), pages 1087-1121, November.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:29:y:2014:i:3:p:479-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.