IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v17y2010i1p157-167.html
   My bibliography  Save this article

Modeling the dynamics of inflation compensation

Author

Listed:
  • Jochmann, Markus
  • Koop, Gary
  • Potter, Simon M.

Abstract

This paper investigates the relationship between short-term and long-term inflation expectations using daily data on inflation compensation derived from the term structure of real and nominal interest rates. We use a flexible econometric model which allows us to uncover this relationship in a data-based manner. We relate our findings to the issue of whether inflation expectations are anchored, unmoored or contained. Our empirical results indicate no support for either unmoored or firmly anchored inflation expectations. Most evidence indicates that inflation expectations are contained.

Suggested Citation

  • Jochmann, Markus & Koop, Gary & Potter, Simon M., 2010. "Modeling the dynamics of inflation compensation," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 157-167, January.
  • Handle: RePEc:eee:empfin:v:17:y:2010:i:1:p:157-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(09)00060-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Levin, Andrew & Gürkaynak, Refet & Swanson, Eric T., 2006. "Does Inflation Targeting Anchor Long-Run Inflation Expectations? Evidence from Long-Term Bond Yields in the US, UK and Sweden," CEPR Discussion Papers 5808, C.E.P.R. Discussion Papers.
    3. Campbell, John & Shiller, Robert, 1988. "Stock Prices, Earnings, and Expected Dividends," Scholarly Articles 3224293, Harvard University Department of Economics.
    4. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    5. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-565, September.
    6. Jon Faust & Dale W. Henderson, 2004. "Is inflation targeting best-practice monetary policy?," Review, Federal Reserve Bank of St. Louis, vol. 86(Jul), pages 117-144.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    9. William Dudley & Michelle Steinberg Ezer & Jennifer E. Roush, 2009. "The case for TIPS: an examination of the costs and benefits," Economic Policy Review, Federal Reserve Bank of New York, vol. 15(Jul), pages 1-17.
    10. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    11. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    12. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    13. Gary Koop & Simon M. Potter, 2007. "A flexible approach to parametric inference in nonlinear time series models," Staff Reports 285, Federal Reserve Bank of New York.
    14. Schotman, Peter C. & Schweitzer, Mark, 2000. "Horizon sensitivity of the inflation hedge of stocks," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 301-315, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    2. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    3. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    4. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    5. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    6. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    7. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    8. Koop, Gary & Potter, Simon M., 2011. "Time varying VARs with inequality restrictions," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 1126-1138, July.
    9. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
    10. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    11. Gefang, Deborah & Koop, Gary & Potter, Simon M., 2012. "The dynamics of UK and US inflation expectations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3120-3133.
    12. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    13. Toshitaka Sekine & Yuki Teranishi, 2008. "Inflation Targeting and Monetary Policy Activism," IMES Discussion Paper Series 08-E-13, Institute for Monetary and Economic Studies, Bank of Japan.
    14. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    15. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    16. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    17. Claudiu Tiberiu Albulescu & Christian Aubin & Daniel Goyeau, 2017. "Stock prices, inflation and inflation uncertainty in the U.S.: testing the long-run relationship considering Dow Jones sector indexes," Applied Economics, Taylor & Francis Journals, vol. 49(18), pages 1794-1807, April.
    18. Arnold, Stephan & Auer, Benjamin R., 2015. "What do scientists know about inflation hedging?," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 187-214.
    19. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    20. Grassi Stefano & Proietti Tommaso, 2010. "Has the Volatility of U.S. Inflation Changed and How?," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-22, September.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:17:y:2010:i:1:p:157-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.