IDEAS home Printed from https://ideas.repec.org/p/bkr/wpaper/wps115.html
   My bibliography  Save this paper

Amortized Neural Networks for Agent-Based Model Forecasting

Author

Listed:
  • Denis Koshelev

    (Bank of Russia, Russian Federation)

  • Alexey Ponomarenko

    (Bank of Russia, Russian Federation)

  • Sergei Seleznev

    (Bank of Russia, Russian Federation)

Abstract

In this paper, we propose a new procedure for unconditional and conditional forecasting in agent-based models. The proposed algorithm is based on the application of amortized neural networks and consists of two steps. The first step simulates artificial datasets from the model. In the second step, a neural network is trained to predict the future values of the variables using the history of observations. The main advantage of the proposed algorithm is its speed. This is due to the fact that, after the training procedure, it can be used to yield predictions for almost any data without additional simulations or the re-estimation of the neural network.

Suggested Citation

  • Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized Neural Networks for Agent-Based Model Forecasting," Bank of Russia Working Paper Series wps115, Bank of Russia.
  • Handle: RePEc:bkr:wpaper:wps115
    as

    Download full text from publisher

    File URL: https://cbr.ru/StaticHtml/File/149735/WP_115_e.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Poledna, Sebastian & Miess, Michael Gregor & Hommes, Cars & Rabitsch, Katrin, 2023. "Economic forecasting with an agent-based model," European Economic Review, Elsevier, vol. 151(C).
    2. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    3. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    4. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    5. Minsu Chang & Xiaohong Chen & Frank Schorfheide, 2021. "Heterogeneity and Aggregate Fluctuations," NBER Working Papers 28853, National Bureau of Economic Research, Inc.
    6. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    7. Lux, Thomas, 2018. "Estimation of agent-based models using sequential Monte Carlo methods," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 391-408.
    8. Farmer, J. Doyne & Axtell, Robert L., 2022. "Agent-Based Modeling in Economics and Finance: Past, Present, and Future," INET Oxford Working Papers 2022-10, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    9. Delli Gatti, Domenico & Grazzini, Jakob, 2020. "Rising to the challenge: Bayesian estimation and forecasting techniques for macroeconomic Agent Based Models," Journal of Economic Behavior & Organization, Elsevier, vol. 178(C), pages 875-902.
    10. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
    11. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.
    2. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    3. Aldo Glielmo & Marco Favorito & Debmallya Chanda & Domenico Delli Gatti, 2023. "Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs," Papers 2302.11835, arXiv.org, revised Dec 2023.
    4. Laura Liu & Mikkel Plagborg‐Møller, 2023. "Full‐information estimation of heterogeneous agent models using macro and micro data," Quantitative Economics, Econometric Society, vol. 14(1), pages 1-35, January.
    5. Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
    6. Laura Liu & Mikkel Plagborg-M?ller, 2021. "Full-Information Estimation of Heterogeneous Agent Models Using Macro and Micro Data," CAEPR Working Papers 2021-001 Classification- , Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    8. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    9. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    10. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    11. Corrado Monti & Marco Pangallo & Gianmarco De Francisci Morales & Francesco Bonchi, 2022. "On learning agent-based models from data," Papers 2205.05052, arXiv.org, revised Nov 2022.
    12. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    13. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    14. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    15. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36, Federal Reserve Bank of Cleveland.
    16. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Working Papers (Old Series) 1134, Federal Reserve Bank of Cleveland.
    17. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    18. Sebastian Ankargren & Måns Unosson & Yukai Yang, 2018. "A mixed-frequency Bayesian vector autoregression with a steady-state prior," CREATES Research Papers 2018-32, Department of Economics and Business Economics, Aarhus University.
    19. Richiardi, Matteo & Bronka, Patryk & van de Ven, Justin, 2023. "Back to the future: Agent-based modelling and dynamic microsimulation," Centre for Microsimulation and Policy Analysis Working Paper Series CEMPA8/23, Centre for Microsimulation and Policy Analysis at the Institute for Social and Economic Research.
    20. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.

    More about this item

    Keywords

    agent-based models; amortized simulation-based inference; Bayesian models; forecasting; neural networks.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:wpaper:wps115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: BoR Research (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.