IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf198.html
   My bibliography  Save this paper

Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors

Author

Listed:
  • Tsunehiro Ishihara

    (Graduate School of Economics, University of Tokyo)

  • Yasuhiro Omori

    (Faculty of Economics, University of Tokyo)

Abstract

The efficient Bayesian estimation method using Markov chain Monte Carlo is proposed for a multivariate stochastic volatility model that is a natural extension of the univariate stochastic volatility model with leverage and heavy-tailed errors, where we further incorporate cross leverage effects among stock returns. Our method is based on a multi-move sampler which samples a block of latent volatility vectors and is described first in the literature for a multivariate stochastic volatility model with cross leverage and heavy-tailed errors. Its high sampling efficiency is shown using numerical examples in comparison with a single-move sampler which samples one latent volatility vector at a time given other latent vectors and parameters. The empirical studies are given using five dimensional stock return indices in Tokyo Stock Exchange.

Suggested Citation

  • Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf198
    as

    Download full text from publisher

    File URL: http://www.carf.e.u-tokyo.ac.jp/pdf/workingpaper/fseries/206.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
    2. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    3. Asai, M. & Caporin, M., 2009. "Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2009-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
    5. Manabu Asai & Michael McAleer, 2006. "Asymmetric Multivariate Stochastic Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 453-473.
    6. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    8. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Multivariate Stochastic Volatility with Cross Leverage," CARF F-Series CARF-F-191, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    10. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
    11. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    12. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    13. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    14. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    15. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    16. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    17. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    18. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    19. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    20. Toshiaki Watanabe, 2004. "A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997)," Biometrika, Biometrika Trust, vol. 91(1), pages 246-248, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    2. Kurose, Yuta & Omori, Yasuhiro, 2016. "Dynamic equicorrelation stochastic volatility," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 795-813.
    3. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
    4. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    5. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    6. António Alberto Santos & João Andrade, 2014. "Stochastic Volatility Estimation with GPU Computing," GEMF Working Papers 2014-10, GEMF, Faculty of Economics, University of Coimbra.
    7. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    8. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    9. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
    10. repec:eee:ecosta:v:3:y:2017:i:c:p:34-59 is not listed on IDEAS
    11. Yuta Kurose & Yasuhiro Omori, "undated". "Multiple-lock Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1075, CIRJE, Faculty of Economics, University of Tokyo.
    12. repec:bla:jecrev:v:68:y:2017:i:1:p:63-94 is not listed on IDEAS
    13. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1024, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf198. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/catokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.