IDEAS home Printed from https://ideas.repec.org/f/c/pmu315.html
   My authors  Follow this author

Jesper Munksgaard

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.

    Cited by:

    1. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    2. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    3. Lion Hirth & Falko Ueckerdt, 2012. "Redistribution Effects of Energy and Climate Policy: The Electricity Market," Working Papers 2012.82, Fondazione Eni Enrico Mattei.
    4. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    5. Cook, Jonathan A. & Lin, C.-Y. Cynthia, 2015. "Wind Turbine Shutdowns and Upgrades in Denmark: Timing Decisions and the Impact of Government Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204960, Agricultural and Applied Economics Association.
    6. Linnenluecke, Martina K. & Han, Jianlei & Pan, Zheyao & Smith, Tom, 2019. "How markets will drive the transition to a low carbon economy," Economic Modelling, Elsevier, vol. 77(C), pages 42-54.
    7. Paul Koutstaal & X. van Tilburg & Michiel Bijlsma & Gijsbert Zwart, 2009. "Market performance and distributional effects on renewable energy markets," CPB Document 190, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Zarnikau, J. & Tsai, C.H. & Woo, C.K., 2020. "Determinants of the wholesale prices of energy and ancillary services in the U.S. Midcontinent electricity market," Energy, Elsevier, vol. 195(C).
    9. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    10. Annukka Berg & Jani Lukkarinen & Kimmo Ollikka, 2020. "‘Sticky’ Policies—Three Country Cases on Long-Term Commitment and Rooting of RE Policy Goals," Energies, MDPI, vol. 13(6), pages 1-14, March.
    11. Suomalainen, Kiti & Pritchard, Geoffrey & Sharp, Basil & Yuan, Ziqi & Zakeri, Golbon, 2015. "Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand," Applied Energy, Elsevier, vol. 137(C), pages 445-462.
    12. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    13. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    14. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    15. Mauritzen, Johannes, 2011. "The Decision to Scrap a Wind Turbine: Opportunity Cost, Timing and Policy," Discussion Papers 2011/17, Norwegian School of Economics, Department of Business and Management Science.
    16. Thure Traber & Claudia Kemfert, 2015. "Renewable Energy Support in Germany: Surcharge Development and the Impact of a Decentralized Capacity Mechanism," Discussion Papers of DIW Berlin 1452, DIW Berlin, German Institute for Economic Research.
    17. Abdullahi Abubakar Mas’ud & Asan Vernyuy Wirba & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Álvaro Jaramillo Duque & Nurul Aini Bani & Abu Bakar Munir, 2017. "Wind Power Potentials in Cameroon and Nigeria: Lessons from South Africa," Energies, MDPI, vol. 10(4), pages 1-19, March.
    18. Kaller, Alexander & Bielen, Samantha & Marneffe, Wim, 2018. "The impact of regulatory quality and corruption on residential electricity prices in the context of electricity market reforms," Energy Policy, Elsevier, vol. 123(C), pages 514-524.
    19. Gholami, Mina Bahrami & Poletti, Stephen & Staffell, Iain, 2021. "Wind, rain, fire and sun: Towards zero carbon electricity for New Zealand," Energy Policy, Elsevier, vol. 150(C).
    20. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    21. Lynch, Muireann & Curtis, John, 2014. "The Effects of Wind Generation Capacity on Electricity Prices and Generation Costs: a Monte Carlo Analysis," Papers WP494, Economic and Social Research Institute (ESRI).
    22. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.
    23. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    24. Wen, Le & Suomalainen, Kiti & Sharp, Basil & Yi, Ming & Sheng, Mingyue Selena, 2022. "Impact of wind-hydro dynamics on electricity price: A seasonal spatial econometric analysis," Energy, Elsevier, vol. 238(PC).
    25. Markard, Jochen & Petersen, Regula, 2009. "The offshore trend: Structural changes in the wind power sector," Energy Policy, Elsevier, vol. 37(9), pages 3545-3556, September.
    26. Liu, Yingqi & Kokko, Ari, 2010. "Wind power in China: Policy and development challenges," Energy Policy, Elsevier, vol. 38(10), pages 5520-5529, October.
    27. Klaas WŸrzburg & Xavier Labandeira & Pedro Linares, 2013. "Renewable Generation and Electricity Prices: Taking Stock and New Evidence for Germany and Austria," Working Papers fa03-2013, Economics for Energy.
    28. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    29. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    30. Mohamed E. A. Farrag & Donald M Hepburn & Belen Garcia, 2019. "Quantification of Efficiency Improvements from Integration of Battery Energy Storage Systems and Renewable Energy Sources into Domestic Distribution Networks," Energies, MDPI, vol. 12(24), pages 1-21, December.
    31. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
    32. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    33. Celiktas, Melih Soner & Kocar, Gunnur, 2009. "A quadratic helix approach to evaluate the Turkish renewable energies," Energy Policy, Elsevier, vol. 37(11), pages 4959-4965, November.
    34. Chi-Keung Woo, Ira Horowitz, Jay Zarnikau, Jack Moore, Brendan Schneiderman, Tony Ho, and Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    35. Liao, Zhongju, 2016. "The evolution of wind energy policies in China (1995–2014): An analysis based on policy instruments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 464-472.
    36. Armagan Canan, 2023. "Offshore wind energy policy paths: A comparative analysis of Denmark and Germany," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(1), pages 35-59.
    37. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2017. "Wind, Storage, Interconnection and the Cost of Electricity Generation," ESP: Energy Scenarios and Policy 253733, Fondazione Eni Enrico Mattei (FEEM).
    38. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    39. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    40. Doherty, Ronan & O'Malley, Mark, 2011. "The efficiency of Ireland's Renewable Energy Feed-In Tariff (REFIT) for wind generation," Energy Policy, Elsevier, vol. 39(9), pages 4911-4919, September.
    41. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    42. Percebois, Jacques & Pommeret, Stanislas, 2019. "Storage cost induced by a large substitution of nuclear by intermittent renewable energies: The French case," Energy Policy, Elsevier, vol. 135(C).
    43. Petra Lunackova & Karel Janda & Jan Prusa, 2017. "The Merit Order Effect of Czech Photovoltaic Plants," Working Papers IES 2017/01, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2017.
    44. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    45. Gallego-Castillo, Cristobal & Victoria, Marta, 2015. "Cost-free feed-in tariffs for renewable energy deployment in Spain," Renewable Energy, Elsevier, vol. 81(C), pages 411-420.
    46. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    47. del Río, Pablo & Calvo Silvosa, Anxo & Iglesias Gómez, Guillermo, 2011. "Policies and design elements for the repowering of wind farms: A qualitative analysis of different options," Energy Policy, Elsevier, vol. 39(4), pages 1897-1908, April.
    48. François Benhmad & Jacques Percebois, 2016. "Wind power feed-in impact on electricity prices in Germany 2009-2013," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 81-96, June.
    49. Klaus S. Friesenbichler, 2013. "Innovation in the Energy Sector. WWWforEurope Working Paper No. 31," WIFO Studies, WIFO, number 46917, April.
    50. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    51. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    52. Zarnikau, J. & Woo, C.K. & Zhu, S. & Tsai, C.H., 2019. "Market price behavior of wholesale electricity products: Texas," Energy Policy, Elsevier, vol. 125(C), pages 418-428.
    53. Shao, Jing & Chen, Huanhuan & Li, Jinke & Liu, Guy, 2022. "An evaluation of the consumer-funded renewable obligation scheme in the UK for wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    54. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    55. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    56. Minh Y Nguyen & Dinh Hung Nguyen & Yong Tae Yoon, 2012. "A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets," Energies, MDPI, vol. 5(12), pages 1-14, December.
    57. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    58. Janina Ketterer, 2012. "The Impact of Wind Power Generation on the Electricity Price in Germany," ifo Working Paper Series 143, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    59. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    60. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Prices in the European Union Region: The Role of Renewable Energy Sources, Key Economic Factors and Market Liberalization," Energies, MDPI, vol. 16(6), pages 1-20, March.
    61. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2010. "Evaluation of wind power planning in Denmark – Towards an integrated perspective," Energy, Elsevier, vol. 35(12), pages 5443-5454.
    62. Martin de Lagarde, Cyril & Lantz, Frédéric, 2018. "How renewable production depresses electricity prices: Evidence from the German market," Energy Policy, Elsevier, vol. 117(C), pages 263-277.
    63. Meylan, Grégoire & Ami, Helen & Spoerri, Andy, 2014. "Transitions of municipal solid waste management. Part II: Hybrid life cycle assessment of Swiss glass-packaging disposal," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 16-27.
    64. Himpler, Sebastian & Madlener, Reinhard, 2011. "Repowering of Wind Turbines: Economics and Optimal Timing," FCN Working Papers 19/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    65. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    66. Mauritzen, Johannes, 2012. "Scrapping a Wind Turbine: Policy Changes, Scrapping Incentives and Why Wind Turbines in Good Locations Get Scrapped First," Working Paper Series 940, Research Institute of Industrial Economics.
    67. Klinge Jacobsen, Henrik & Zvingilaite, Erika, 2010. "Reducing the market impact of large shares of intermittent energy in Denmark," Energy Policy, Elsevier, vol. 38(7), pages 3403-3413, July.
    68. Daron Acemoglu, Ali Kakhbod, and Asuman Ozdaglar, 2017. "Competition in Electricity Markets with Renewable Energy Sources," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    69. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    70. Woo, C.K. & Ho, T. & Zarnikau, J. & Olson, A. & Jones, R. & Chait, M. & Horowitz, I. & Wang, J., 2014. "Electricity-market price and nuclear power plant shutdown: Evidence from California," Energy Policy, Elsevier, vol. 73(C), pages 234-244.
    71. Amor, Mourad Ben & Billette de Villemeur, Etienne & Pellat, Marie & Pineau, Pierre-Olivier, 2014. "Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from Ontario zonal data," Energy, Elsevier, vol. 66(C), pages 458-469.
    72. Schaefer, Manuel S. & Lloyd, Bob & Stephenson, Janet R., 2012. "The suitability of a feed-in tariff for wind energy in New Zealand—A study based on stakeholders' perspectives," Energy Policy, Elsevier, vol. 43(C), pages 80-91.
    73. Zarnikau, J. & Zhu, S. & Woo, C.K. & Tsai, C.H., 2020. "Texas's operating reserve demand curve's generation investment incentive," Energy Policy, Elsevier, vol. 137(C).
    74. Pradhan, Ashis Kumar & Rout, Sandhyarani & Khan, Imran Ahmed, 2021. "Does market concentration affect wholesale electricity prices? An analysis of the Indian electricity sector in the COVID-19 pandemic context," Utilities Policy, Elsevier, vol. 73(C).
    75. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    76. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    77. Simon Ambühl & Morten Kramer & John Dalsgaard Sørensen, 2014. "Reliability-Based Structural Optimization of Wave Energy Converters," Energies, MDPI, vol. 7(12), pages 1-23, December.
    78. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.
    79. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    80. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    81. Walters, Ryan & Walsh, Philip R., 2011. "Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom," Energy Policy, Elsevier, vol. 39(9), pages 5167-5181, September.
    82. Duc Luong, Nguyen, 2015. "A critical review on potential and current status of wind energy in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 440-448.
    83. Valeria Di Cosmo & Laura Malaguzzi Valeri, 2016. "Wind, storage, interconnection and the cost of electricity," Working Papers 2016/30, Institut d'Economia de Barcelona (IEB).
    84. Jägemann, Cosima & Hagspiel, Simeon & Lindenberger, Dietmar, 2013. "The Economic Inefficiency of Grid Parity: The Case of German Photovoltaics," EWI Working Papers 2013-19, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    85. Gao, Cuixia & Sun, Mei & Geng, Yong & Wu, Rui & Chen, Wei, 2016. "A bibliometric analysis based review on wind power price," Applied Energy, Elsevier, vol. 182(C), pages 602-612.

  2. Munksgaard, Jesper & Christoffersen, Line Block & Keiding, Hans & Pedersen, Ole Gravgard & Jensen, Trine S., 2007. "An environmental performance index for products reflecting damage costs," Ecological Economics, Elsevier, vol. 64(1), pages 119-130, October.

    Cited by:

    1. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    2. Bellenger, Moriah J. & Herlihy, Alan T., 2010. "Performance-based environmental index weights: Are all metrics created equal?," Ecological Economics, Elsevier, vol. 69(5), pages 1043-1050, March.
    3. Bellenger, Moriah J. & Herlihy, Alan T., 2009. "An economic approach to environmental indices," Ecological Economics, Elsevier, vol. 68(8-9), pages 2216-2223, June.
    4. Arya, Adarsh Kumar & Kumar, Adarsh & Pujari, Murali & Pacheco, Diego A.de J., 2023. "Improving natural gas supply chain profitability: A multi-methods optimization study," Energy, Elsevier, vol. 282(C).
    5. Lozano, Sebastián & Iribarren, Diego & Moreira, María Teresa & Feijoo, Gumersindo, 2010. "Environmental impact efficiency in mussel cultivation," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1269-1277.
    6. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    7. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    8. Bonney, Maurice & Jaber, Mohamad Y., 2013. "Developing an input–output activity matrix (IOAM) for environmental and economic analysis of manufacturing systems and logistics chains," International Journal of Production Economics, Elsevier, vol. 143(2), pages 589-597.
    9. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    10. Köne, Aylin Çiğdem & Büke, Tayfun, 2012. "A comparison for Turkish provinces’ performance of urban air pollution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1300-1310.

  3. Klinge Jacobsen, Henrik & Fristrup, Peter & Munksgaard, Jesper, 2006. "Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences," Energy Policy, Elsevier, vol. 34(18), pages 3527-3537, December.

    Cited by:

    1. Laurent Granier & Marion Podesta, 2010. "Bundling and Mergers in Energy Markets," Post-Print hal-00955456, HAL.
    2. Simone Di Leo & Marta Chicca & Cinzia Daraio & Andrea Guerrini & Stefano Scarcella, 2022. "A Framework for the Analysis of the Sustainability of the Energy Retail Market," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    3. Gong, Binlei, 2018. "Different behaviors in natural gas production between national and private oil companies: Economics-driven or environment-driven?," Energy Policy, Elsevier, vol. 114(C), pages 145-152.
    4. Kishimoto, Jo & Goto, Mika & Inoue, Kotaro, 2017. "Do acquisitions by electric utility companies create value? Evidence from deregulated markets," Energy Policy, Elsevier, vol. 105(C), pages 212-224.
    5. Amoiralis, Eleftherios I. & Andriosopoulos, Kostas, 2017. "Challenges for a compliance officer in the liberalized EU energy market: A case study on the Greek gas transmission system operator," Energy Policy, Elsevier, vol. 110(C), pages 117-125.
    6. Domanico, Fabio, 2007. "Concentration in the European electricity industry: The internal market as solution?," Energy Policy, Elsevier, vol. 35(10), pages 5064-5076, October.

  4. Jesper Munksgaard & Lise-Lotte Pade & Jan Minx & Manfred Lenzen, 2005. "Influence of trade on national CO 2 emissions," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(4), pages 324-336.

    Cited by:

    1. Marco Springmann & Da Zhang & Valerie Karplus, 2015. "Consumption-Based Adjustment of Emissions-Intensity Targets: An Economic Analysis for China’s Provinces," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 615-640, August.
    2. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    3. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    4. Tao Ding & Yadong Ning & Yan Zhang, 2017. "The Contribution of China’s Outward Foreign Direct Investment (OFDI) to the Reduction of Global CO 2 Emissions," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    5. Sinha, Avik & Sen, Sudipta, 2016. "Atmospheric consequences of trade and human development: A case of BRIC countries," MPRA Paper 100011, University Library of Munich, Germany.
    6. Grzegorz Mentel & Waldemar Tarczyński & Marek Dylewski & Raufhon Salahodjaev, 2022. "Does Renewable Energy Sector Affect Industrialization-CO 2 Emissions Nexus in Europe and Central Asia?," Energies, MDPI, vol. 15(16), pages 1-12, August.
    7. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    8. Nouf Alnafisah & Eman Alsmari & Amal Alshehri & Jawaher Binsuwadan, 2024. "Assessing the Impacts of Technological Innovation on Carbon Emissions in MENA Countries: Application of the Innovation Curve Theory," Energies, MDPI, vol. 17(4), pages 1-15, February.
    9. Andersen, Otto & Gössling, Stefan & Simonsen, Morten & Walnum, Hans Jakob & Peeters, Paul & Neiberger, Cordula, 2010. "CO2 emissions from the transport of China's exported goods," Energy Policy, Elsevier, vol. 38(10), pages 5790-5798, October.
    10. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    11. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    12. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    13. Springmann, Marco & Zhang, Da & Xiliang, Zhang & Karplus, Valerie J., 2013. "Incorporating consumption-based emissions accounting into climate policy in China: Provincial target setting and ETS baseline allocations," Conference papers 332341, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Leying Wu & Zhangqi Zhong & Changxin Liu & Zheng Wang, 2017. "Examining PM 2.5 Emissions Embodied in China’s Supply Chain Using a Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    15. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    16. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    17. Liu, Xianbing & Ishikawa, Masanobu & Wang, Can & Dong, Yanli & Liu, Wenling, 2010. "Analyses of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(3), pages 1510-1518, March.

  5. Mette Wier & Line Block Christoffersen & Trine Jensen & Ole Pedersen & Hans Keiding & Jesper Munksgaard, 2005. "Evaluating sustainability of household consumption—Using DEA to assess environmental performance," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 425-447.

    Cited by:

    1. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    2. Agnes Gold & Stefan Gold, 2019. "Drivers of Farm Efficiency and Their Potential for Development in a Changing Agricultural Setting in Kerala, India," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 31(4), pages 855-880, September.
    3. Halkos, George & Tzeremes, Nickolaos, 2011. "Does the Kyoto Protocol Agreement matters? An environmental efficiency analysis," MPRA Paper 30652, University Library of Munich, Germany.
    4. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    5. Yuting Cui & Raphael Lissillour & Juraj Chebeň & Drahoslav Lančarič & Chunlin Duan, 2022. "The position of financial prudence, social influence, and environmental satisfaction in the sustainable consumption behavioural model: Cross‐market intergenerational investigation during the Covid‐19 ," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 996-1020, July.
    6. George Halkos & Nickolaos Tzeremes, 2014. "Measuring the effect of Kyoto protocol agreement on countries’ environmental efficiency in CO 2 emissions: an application of conditional full frontiers," Journal of Productivity Analysis, Springer, vol. 41(3), pages 367-382, June.
    7. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.
    8. Kagawa, Shigemi, 2008. "How does Japanese compliance with the Kyoto Protocol affect environmental productivity in China and Japan?," Structural Change and Economic Dynamics, Elsevier, vol. 19(2), pages 173-188, June.

  6. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.

    Cited by:

    1. Baynes, Timothy & Lenzen, Manfred & Steinberger, Julia K. & Bai, Xuemei, 2011. "Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy," Energy Policy, Elsevier, vol. 39(11), pages 7298-7309.
    2. Amundsen, Eirik S. & Andersen, Per & Jensen, Frank, 2011. "Testing for cross-subsidisation in the combined heat and power generation sector: A comparison of three tests," Energy Economics, Elsevier, vol. 33(5), pages 750-757, September.

  7. Munksgaard, Jesper & Pade, Lise-Lotte & Fristrup, Peter, 2005. "Efficiency gains in Danish district heating. Is there anything to learn from benchmarking?," Energy Policy, Elsevier, vol. 33(15), pages 1986-1997, October.

    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Linden, Mikael & Peltola-Ojala, Päivi, 2010. "The deregulation effects of Finnish electricity markets on district heating prices," Energy Economics, Elsevier, vol. 32(5), pages 1191-1198, September.
    3. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    4. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    5. Park, Sun-Young & Lee, Kyoung-Sil & Yoo, Seung-Hoon, 2016. "Economies of scale in the Korean district heating system: A variable cost function approach," Energy Policy, Elsevier, vol. 88(C), pages 197-203.
    6. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.
    7. Janis Edmunds Daugavietis & Raimonda Soloha & Elina Dace & Jelena Ziemele, 2022. "A Comparison of Multi-Criteria Decision Analysis Methods for Sustainability Assessment of District Heating Systems," Energies, MDPI, vol. 15(7), pages 1-23, March.
    8. Boscan, Luis & Söderberg, Magnus, 2021. "A theoretical and empirical analysis of district heating cost in Denmark," Energy Economics, Elsevier, vol. 99(C).
    9. Torchio, Marco F. & Genon, Giuseppe & Poggio, Alberto & Poggio, Marco, 2009. "Merging of energy and environmental analyses for district heating systems," Energy, Elsevier, vol. 34(3), pages 220-227.

  8. Jesper Munksgaard & Mette Wier & Manfred Lenzen & Christopher Dey, 2005. "Using Input‐Output Analysis to Measure the Environmental Pressure of Consumption at Different Spatial Levels," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 169-185, January.

    Cited by:

    1. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    2. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    3. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    4. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    5. Zhang, Qiwen & Ntom Udemba, Edmund, 2023. "Comparative analysis of two resources-based economies: A study of policy recommendation toward sustainable development," Resources Policy, Elsevier, vol. 80(C).
    6. Jacksohn, Anke & Tovar Reaños, Miguel Angel & Pothen, Frank & Rehdanz, Katrin, 2023. "Trends in household demand and greenhouse gas footprints in Germany: Evidence from microdata of the last 20 years," Ecological Economics, Elsevier, vol. 208(C).
    7. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    8. Kemp-Benedict, Eric, 2014. "The inverted pyramid: A neo-Ricardian view on the economy–environment relationship," Ecological Economics, Elsevier, vol. 107(C), pages 230-241.
    9. Xi Xie & Wenjia Cai & Yongkai Jiang & Weihua Zeng, 2015. "Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    10. Moran, Daniel D. & Wackernagel, Mathis C. & Kitzes, Justin A. & Heumann, Benjamin W. & Phan, Doantam & Goldfinger, Steven H., 2009. "Trading spaces: Calculating embodied Ecological Footprints in international trade using a Product Land Use Matrix (PLUM)," Ecological Economics, Elsevier, vol. 68(7), pages 1938-1951, May.
    11. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    12. Siyu Hou & Yu Liu & Xu Zhao & Martin R. Tillotson & Wei Guo & Yiping Li, 2018. "Blue and Green Water Footprint Assessment for China—A Multi-Region Input–Output Approach," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    13. Rodrigues, Joao & Domingos, Tiago & Giljum, Stefan & Schneider, Francois, 2006. "Designing an indicator of environmental responsibility," Ecological Economics, Elsevier, vol. 59(3), pages 256-266, September.
    14. Qingsong Wang & Ping Liu & Xueliang Yuan & Xingxing Cheng & Rujian Ma & Ruimin Mu & Jian Zuo, 2015. "Structural Evolution of Household Energy Consumption: A China Study," Sustainability, MDPI, vol. 7(4), pages 1-14, April.
    15. Li, Xi & Ouyang, Zhigang & Zhang, Qiong & Shang, Wen-long & Huang, Liqiao & Wu, Yi & Gao, Yuning, 2022. "Evaluating food supply chain emissions from Japanese household consumption," Applied Energy, Elsevier, vol. 306(PB).
    16. Ke Wang & Jiayu Wang & Klaus Hubacek & Zhifu Mi & Yi‐Ming Wei, 2020. "A cost–benefit analysis of the environmental taxation policy in China: A frontier analysis‐based environmentally extended input–output optimization method," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 564-576, June.
    17. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    18. Yong Wang & Hong-lang Xiao & Rui-fang Wang, 2009. "Water Scarcity and Water Use in Economic Systems in Zhangye City, Northwestern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2655-2668, October.
    19. Mergoni, Anna & D'Inverno, Giovanna & Carosi, Laura, 2022. "A composite indicator for measuring the environmental performance of water, wastewater, and solid waste utilities," Utilities Policy, Elsevier, vol. 74(C).
    20. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    21. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    22. Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
    23. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    24. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    25. Mubako, Stanley & Lahiri, Sajal & Lant, Christopher, 2013. "Input–output analysis of virtual water transfers: Case study of California and Illinois," Ecological Economics, Elsevier, vol. 93(C), pages 230-238.
    26. Duarte, Rosa & Feng, Kuishuang & Hubacek, Klaus & Sánchez-Chóliz, Julio & Sarasa, Cristina & Sun, Laixiang, 2016. "Modeling the carbon consequences of pro-environmental consumer behavior," Applied Energy, Elsevier, vol. 184(C), pages 1207-1216.
    27. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.
    28. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    29. Jean-Christophe MARTIN & Patrick POINT, 2011. "Construction of linkage indicators of greenhouse gas emissions for Aquitaine region," Cahiers du GREThA (2007-2019) 2011-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    30. Akvilė Feiferytė-Skirienė & Lina Draudvilienė & Žaneta Stasiškienė & Sergej Sosunkevič & Kastytis Pamakštys & Laura Daniusevičiūtė-Brazaitė & Inga Gurauskienė, 2022. "Co-Creation Hub Is the First Step for the Successful Creation of a Unified Urban Ecosystem-Kaunas City Example," IJERPH, MDPI, vol. 19(5), pages 1-12, February.

  9. Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.

    Cited by:

    1. Maenpaa, Ilmo & Siikavirta, Hanne, 2007. "Greenhouse gases embodied in the international trade and final consumption of Finland: An input-output analysis," Energy Policy, Elsevier, vol. 35(1), pages 128-143, January.
    2. Rutger Hoekstra & Marco A. Janssen, 2002. "Environmental Responsibility and Policy in a Two Country Dynamic Input-Output Model," Tinbergen Institute Discussion Papers 02-103/3, Tinbergen Institute.
    3. Byun, Jeongeun & Park, Hyun-woo & Hong, Jae Pyo, 2017. "An international comparison of competitiveness in knowledge services," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 203-213.
    4. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    5. Meng, Bo & Peters, Glen & Wang, Zhi, 2015. "Tracing CO2 emissions in global value chains," IDE Discussion Papers 486, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    6. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 35830, University Library of Munich, Germany.
    7. Chen, B. & Yang, Q. & Zhou, Sili & Li, J.S. & Chen, G.Q., 2017. "Urban economy's carbon flow through external trade: Spatial-temporal evolution for Macao," Energy Policy, Elsevier, vol. 110(C), pages 69-78.
    8. Svetlana Ivanova & Anna Vesnina & Nataly Fotina & Alexander Prosekov, 2022. "An Overview of Carbon Footprint of Coal Mining to Curtail Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    9. Stefan Ederer & Stefan Weingärtner, 2014. "Structural Disparities in Carbon Dioxide Consumption and Trade in the World Economy. WWWforEurope Policy Paper No. 16," WIFO Studies, WIFO, number 47498, April.
    10. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    11. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    12. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    13. Fernández-Amador, Octavio & Francois, Joseph F. & Tomberger, Patrick, 2016. "Carbon dioxide emissions and international trade at the turn of the millennium," Ecological Economics, Elsevier, vol. 125(C), pages 14-26.
    14. Jordi Roca & Mònica Serrano, 2006. "Income growth and atmospheric pollution in Spain: an Input-Output approach," UHE Working papers 2006_04, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    15. Yang, Siyuan & Chen, Bin & Fath, Brian, 2015. "Trans-boundary total suspended particulate matter (TSPM) in urban ecosystems," Ecological Modelling, Elsevier, vol. 318(C), pages 59-63.
    16. Munday, Max & Turner, Karen & Jones, Calvin, 2013. "Accounting for the carbon associated with regional tourism consumption," Tourism Management, Elsevier, vol. 36(C), pages 35-44.
    17. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    18. Gabriela Michalek & Reimund Schwarze, 2014. "Carbon Leakage: Pollution, Trade or Politics?," Discussion Paper Series RECAP15 12, RECAP15, European University Viadrina, Frankfurt (Oder).
    19. Rocco, Matteo V. & Colombo, Emanuela, 2016. "Internalization of human labor in embodied energy analysis: Definition and application of a novel approach based on Environmentally extended Input-Output analysis," Applied Energy, Elsevier, vol. 182(C), pages 590-601.
    20. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    21. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    22. Cortés-Borda, D. & Ruiz-Hernández, A. & Guillén-Gosálbez, G. & Llop, M. & Guimerà, R. & Sales-Pardo, M., 2015. "Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach," Energy Policy, Elsevier, vol. 77(C), pages 21-30.
    23. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    24. Qingqing Ban & Yiwen Li & Guiliang Tian & Zheng Wu & Qing Xia, 2023. "Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt," Energies, MDPI, vol. 16(13), pages 1-19, June.
    25. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    26. Lenzen, Manfred & Murray, Joy & Sack, Fabian & Wiedmann, Thomas, 2007. "Shared producer and consumer responsibility -- Theory and practice," Ecological Economics, Elsevier, vol. 61(1), pages 27-42, February.
    27. Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
    28. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    29. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    30. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    31. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    32. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    33. Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
    34. Jihoon Min & Narasimha D. Rao, 2018. "Estimating Uncertainty in Household Energy Footprints," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1307-1317, December.
    35. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    36. Kieran Donaghy & Clifford R. Wymer & Geoffrey J. D. Hewings & Soo Jung Ha, 2017. "Structural change in the Chicago region and the impact on emission inventories in a continuous-time modeling approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-28, December.
    37. Goldar, Amrita & Bhanot, Jaya & Shimpo, Kazushige, 2011. "Prioritizing towards a green export portfolio for India: An environmental input–output approach," Energy Policy, Elsevier, vol. 39(11), pages 7036-7048.
    38. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    39. Patricia Gurria & Tevecia Ronzon & Saulius Tamosiunas & Raul Lopez & Sara Garcia Condado & Jordi Guillen & Noemi Cazzaniga & Ragnar Jonsson & Manjola Banja & Gianluca Fiore & Andrea Camia & Robert M'B, 2017. "Biomass flows in the European Union: The Sankey biomass diagram - towards a cross-set integration of biomass," JRC Research Reports JRC106502, Joint Research Centre.
    40. Cristiano Cantore & Miguel A. Leon-Ledesma & Peter McAdam & Alpo Willman, 2013. "Shocking Stuff: Technology, Hours, and Factor Substitution," School of Economics Discussion Papers 0913, School of Economics, University of Surrey.
    41. Kristinn Hermannsson & Stuart G McIntyre, 2013. "Local consumption and territorial based accounting for CO2 emissions," Working Papers 1315, University of Strathclyde Business School, Department of Economics.
    42. Dong, Yanli & Ishikawa, Masanobu & Liu, Xianbing & Wang, Can, 2010. "An analysis of the driving forces of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(11), pages 6784-6792, November.
    43. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    44. Rivera-Basques, Luisa & Duarte, Rosa & Sánchez-Chóliz, Julio, 2021. "Unequal ecological exchange in the era of global value chains: The case of Latin America," Ecological Economics, Elsevier, vol. 180(C).
    45. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    46. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    47. Jukka Heinonen & Seppo Junnila, 2011. "A Carbon Consumption Comparison of Rural and Urban Lifestyles," Sustainability, MDPI, vol. 3(8), pages 1-16, August.
    48. Satoshi Honma & Yushi Yoshida, 2012. "An Empirical Investigation of the Balance of Embodied Emission in Trade:Industry Structure and Emission Abatement," Discussion Papers 57, Kyushu Sangyo University, Faculty of Economics.
    49. Freire-González, Jaume, 2017. "A new way to estimate the direct and indirect rebound effect and other rebound indicators," Energy, Elsevier, vol. 128(C), pages 394-402.
    50. Jaume Freire González & Oliver Canosa, 2023. "Economic Crises and Energy Use: An Input-Output Analysis of Catalonia’s 2008–2014 Financial Crisis," Working Papers 1405, Barcelona School of Economics.
    51. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    52. Turner, Karen & Katris, Antonios, 2017. "A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?," Energy Policy, Elsevier, vol. 103(C), pages 249-257.
    53. O’Donoghue, Cathal & Chyzheuskaya, Aksana & Grealis, Eoin & Finnegan, William & Goggin, Jamie & Hynes, Stephen & Kilcline, Kevin & Ryan, Mary, 2018. "Measuring GHG Emissions Across the Agri-Food Sector Value Chain: The Development of BIO - a Bio-economy Input- Output Model," 2018 International European Forum (163rd EAAE Seminar), February 5-9, 2018, Innsbruck-Igls, Austria 276856, International European Forum on System Dynamics and Innovation in Food Networks.
    54. Mònica Serrano & Jordi Roca, 2007. "Atmospheric Pollution and Consumption Patterns in Spain: An Input-Output Approach," Working Papers 2007.62, Fondazione Eni Enrico Mattei.
    55. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    56. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    57. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    58. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    59. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    60. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    61. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    62. Llop, Maria & Ponce-Alifonso, Xavier, 2015. "Identifying the role of final consumption in structural path analysis: An application to water uses," Ecological Economics, Elsevier, vol. 109(C), pages 203-210.
    63. Guo, Shan & Li, Yilin & Hu, Yunhao & Xue, Fan & Chen, Bin & Chen, Zhan-Ming, 2020. "Embodied energy in service industry in global cities: A study of six Asian cities," Land Use Policy, Elsevier, vol. 91(C).
    64. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    65. Carlos Llano & Santiago Pérez-Balsalobre & Julian Pérez-García, 2018. "Greenhouse Gas Emissions from Intra-National Freight Transport: Measurement and Scenarios for Greater Sustainability in Spain," Sustainability, MDPI, vol. 10(7), pages 1-33, July.
    66. Jing Li & Hong Fang & Siran Fang & Zhiming Zhang & Pengyuan Zhang, 2021. "Embodied Energy Use in China’s Transportation Sector: A Multi-Regional Input–Output Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    67. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    68. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    69. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    70. Caroline Hambÿe & Bart Hertveldt & Bernhard Michel, 2018. "Does consistency with detailed national data matter for calculating carbon footprints with global multi-regional input–output tables? A comparative analysis for Belgium based on a structural decomposi," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-22, December.
    71. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    72. Llop, Maria & Tol, Richard S. J., 2011. "Decomposition of Sectoral Greenhouse Gas Emissions: A Subsystem Input-Output Model for the Republic of Ireland," Papers WP398, Economic and Social Research Institute (ESRI).
    73. Zhang, Da & Caron, Justin & Winchester, Niven & Karplus, Valerie J., 2013. "Sectoral aggregation bias in the accounting of emissions embodied in trade and consumption," Conference papers 332330, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    74. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    75. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    76. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    77. Gemechu, Eskinder D. & Butnar, Isabela & Llop Llop, Maria & Sangwong, S. & Castells i Piqué, Francesc, 2013. "CO2 emissions embodied in international trade: A multiregional Inputoutput model for Spain," Working Papers 2072/212195, Universitat Rovira i Virgili, Department of Economics.
    78. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    79. Chavez, Abel & Ramaswami, Anu, 2013. "Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance," Energy Policy, Elsevier, vol. 54(C), pages 376-384.
    80. Fan, Xiaojia & Wu, Sanmang & Li, Shantong, 2019. "Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China," Energy, Elsevier, vol. 185(C), pages 1235-1249.
    81. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    82. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    83. Stefan Ederer & Stefan Weingärtner, 2014. "Structural Disparities in Carbon Dioxide Consumption and Trade in the World Economy," WIFO Working Papers 478, WIFO.
    84. Ackerman, Frank & Ishikawa, Masanobu & Suga, Mikio, 2007. "The carbon content of Japan-US trade," Energy Policy, Elsevier, vol. 35(9), pages 4455-4462, September.
    85. Muñoz, Pablo & Steininger, Karl W., 2010. "Austria's CO2 responsibility and the carbon content of its international trade," Ecological Economics, Elsevier, vol. 69(10), pages 2003-2019, August.
    86. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    87. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    88. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    89. de Vries, Gaaitzen J. & Ferrarini, Benno, 2017. "What Accounts for the Growth of Carbon Dioxide Emissions in Advanced and Emerging Economies? The Role of Consumption, Technology and Global Supply Chain Participation," Ecological Economics, Elsevier, vol. 132(C), pages 213-223.
    90. Patricia Gurria Albusac & Hugo Gonzalez Hermoso & Tevecia Ronzon & Saulius Tamosiunas & Raul Lopez & Sara Garcia Condado & Giulia Ronchetti & Jordi Guillen & Manjola Banja & Gianluca Fiore & Robert M’, 2020. "Biomass flows in the European Union: EU Biomass Flows tool, version 2020," JRC Research Reports JRC122379, Joint Research Centre.
    91. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    92. Decun Wu & Jinping Liu, 2016. "Multi-Regional Input-Output (MRIO) Study of the Provincial Ecological Footprints and Domestic Embodied Footprints Traded among China’s 30 Provinces," Sustainability, MDPI, vol. 8(12), pages 1-31, December.
    93. Butnar, Isabela & Llop Llop, Maria, 2006. "Composition of Greenhouse Gas Emissions in Spain: an Input-Output Analysis," Working Papers 2072/1750, Universitat Rovira i Virgili, Department of Economics.
    94. Yu, Shasha & Yuan, Xuanyu & Yao, Xinyan & Lei, Ming, 2022. "Carbon leakage and low-carbon performance: Heterogeneity of responsibility perspectives," Energy Policy, Elsevier, vol. 165(C).
    95. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    96. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    97. Sato, Misato, 2014. "Product level embodied carbon flows in bilateral trade," LSE Research Online Documents on Economics 57232, London School of Economics and Political Science, LSE Library.
    98. Lenzen, Manfred, 2007. "Structural path analysis of ecosystem networks," Ecological Modelling, Elsevier, vol. 200(3), pages 334-342.
    99. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    100. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    101. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    102. Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
    103. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2012. "International trade and shared environmental responsibility by sector. An application to the Spanish economy," Ecological Economics, Elsevier, vol. 83(C), pages 221-235.
    104. McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2008. "The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data," Ecological Economics, Elsevier, vol. 66(4), pages 662-673, July.
    105. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    106. Hong, Jingke & Shen, Geoffrey Qiping & Guo, Shan & Xue, Fan & Zheng, Wei, 2016. "Energy use embodied in China׳s construction industry: A multi-regional input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1303-1312.
    107. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    108. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.
    109. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    110. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    111. Birgit Bednar-Friedl & Veronika Kulmer & Thomas Schinko, 2011. "ETCLIP – The Challenge of the European Carbon Market: Emission Trading, Carbon Leakage and Instruments to Stabilise the CO2 Price. Effects of Different EU Climate Policy Scenarios on International Tra," WIFO Studies, WIFO, number 43107, April.
    112. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    113. Cazcarro, I. & Hoekstra, A.Y. & Sánchez Chóliz, J., 2014. "The water footprint of tourism in Spain," Tourism Management, Elsevier, vol. 40(C), pages 90-101.
    114. Weixin Yang & Hao Gao & Yunpeng Yang & Jiacheng Liao, 2022. "Embodied Carbon in China’s Export Trade: A Multi Region Input-Output Analysis," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    115. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    116. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    117. Jani Laine & Juudit Ottelin & Jukka Heinonen & Seppo Junnila, 2017. "Consequential Implications of Municipal Energy System on City Carbon Footprints," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    118. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    119. Bo Zhang & Suping Peng & Xiangyang Xu & Lijie Wang, 2011. "Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials," Energies, MDPI, vol. 4(11), pages 1-19, November.
    120. Gavrilova, Olga & Vilu, Raivo, 2012. "Production-based and consumption-based national greenhouse gas inventories: An implication for Estonia," Ecological Economics, Elsevier, vol. 75(C), pages 161-173.
    121. Thomas Wiedmann, 2017. "On the decomposition of total impact multipliers in a supply and use framework," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-11, December.
    122. Zhang, Wencheng & Wei, Rui & Peng, Shuijun, 2020. "The oil-slick trade: An analysis of embodied crude oil in China's trade and consumption," Energy Economics, Elsevier, vol. 88(C).
    123. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    124. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    125. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2010. "CO2 emissions of international freight transport and offshoring: Measurement and allocation," Ecological Economics, Elsevier, vol. 69(8), pages 1682-1694, June.
    126. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    127. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    128. Piaggio, Matías & Alcántara, Vicent & Padilla, Emilio, 2015. "The materiality of the immaterial," Ecological Economics, Elsevier, vol. 110(C), pages 1-10.
    129. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    130. Birgit BEDNAR-FRIEDL & Thomas SCHINKO & Karl STEININGER, 2010. "A CGE Analysis of Climate Policy Options after Copenhagen: Bottom-up Approaches, Border Tax Adjustments, and Carbon Leakage," EcoMod2010 259600022, EcoMod.

  10. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.

    Cited by:

    1. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    2. Li, Xin & Feng, Kuishuang & Siu, Yim Ling & Hubacek, Klaus, 2012. "Energy-water nexus of wind power in China: The balancing act between CO2 emissions and water consumption," Energy Policy, Elsevier, vol. 45(C), pages 440-448.
    3. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Alvarez, Sergio & Sosa, María & Rubio, Agustín, 2015. "Product and corporate carbon footprint using the compound method based on financial accounts. The case of Osorio wind farms," Applied Energy, Elsevier, vol. 139(C), pages 196-204.
    5. Holttinen, Hannele & Tuhkanen, Sami, 2004. "The effect of wind power on CO2 abatement in the Nordic Countries," Energy Policy, Elsevier, vol. 32(14), pages 1639-1652, September.
    6. Karagiannis, Ioannis C. & Soldatos, Peter G., 2010. "Estimation of critical CO2 values when planning the power source in water desalination: The case of the small Aegean islands," Energy Policy, Elsevier, vol. 38(8), pages 3891-3897, August.
    7. Abolhosseini, Shahrouz & Heshmati, Almas´ & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," Working Paper Series in Economics and Institutions of Innovation 374, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    8. Chen, G.Q. & Yang, Q. & Zhao, Y.H., 2011. "Renewability of wind power in China: A case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2322-2329, June.
    9. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    10. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    11. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    12. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    13. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    14. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    15. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    16. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    17. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    18. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    19. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    20. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    21. Raadal, Hanne Lerche & Vold, Bjørn Ivar & Myhr, Anders & Nygaard, Tor Anders, 2014. "GHG emissions and energy performance of offshore wind power," Renewable Energy, Elsevier, vol. 66(C), pages 314-324.
    22. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    23. Hannes Kunz & Nathan John Hagens & Stephen B. Balogh, 2014. "The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations," Energies, MDPI, vol. 7(1), pages 1-23, January.
    24. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    25. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    26. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    27. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    28. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    29. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    30. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    31. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    32. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    33. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    34. Tariq Muneer & Rory Dowell, 2022. "Potential for renewable energy–assisted harvesting of potatoes in Scotland [Energy supply, its demands and security issues for developed and emerging economies]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 469-481.
    35. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    36. Weinzettel, Jan & Reenaas, Marte & Solli, Christian & Hertwich, Edgar G., 2009. "Life cycle assessment of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 742-747.
    37. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    38. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    39. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    40. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Saihin Lai & Liphuat Saw & Xianbo Xiang & Chin-Tsan Wang, 2019. "Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application," Energies, MDPI, vol. 12(8), pages 1-28, April.
    41. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    42. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    43. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    44. Battisti, L., 2023. "Energy, power, and greenhouse gas emissions for future transition scenarios," Energy Policy, Elsevier, vol. 179(C).
    45. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    46. Moussavi, S. & Barutha, P. & Dvorak, B., 2023. "Environmental life cycle assessment of a novel offshore wind energy design project: A United States based case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    47. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    48. Trainer, Ted, 2014. "The limits to solar thermal electricity," Energy Policy, Elsevier, vol. 73(C), pages 57-64.
    49. Punt, Maarten J. & Groeneveld, Rolf A. & van Ierland, Ekko C. & Stel, Jan H., 2009. "Spatial planning of offshore wind farms: A windfall to marine environmental protection?," Ecological Economics, Elsevier, vol. 69(1), pages 93-103, November.
    50. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    51. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    52. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    53. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    54. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.
    55. Fleck, Brian & Huot, Marc, 2009. "Comparative life-cycle assessment of a small wind turbine for residential off-grid use," Renewable Energy, Elsevier, vol. 34(12), pages 2688-2696.
    56. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    57. Khan, Faisal I. & Hawboldt, Kelly & Iqbal, M.T., 2005. "Life Cycle Analysis of wind–fuel cell integrated system," Renewable Energy, Elsevier, vol. 30(2), pages 157-177.
    58. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
    59. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    60. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.
    61. Chen, H. & Chen, G.Q., 2011. "Energy cost of rapeseed-based biodiesel as alternative energy in China," Renewable Energy, Elsevier, vol. 36(5), pages 1374-1378.
    62. Oebels, Kerstin B. & Pacca, Sergio, 2013. "Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil," Renewable Energy, Elsevier, vol. 53(C), pages 60-70.
    63. Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2007. "Environmental effects of energy policy in sicily: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 282-298, February.
    64. Bush, Ruth & Jacques, David A. & Scott, Kate & Barrett, John, 2014. "The carbon payback of micro-generation: An integrated hybrid input–output approach," Applied Energy, Elsevier, vol. 119(C), pages 85-98.
    65. Cherif, Habib & Champenois, Gérard & Belhadj, Jamel, 2016. "Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1504-1513.
    66. Jorge, Raquel S. & Hertwich, Edgar G., 2013. "Environmental evaluation of power transmission in Norway," Applied Energy, Elsevier, vol. 101(C), pages 513-520.
    67. Berndt, M.L., 2015. "Influence of concrete mix design on CO2 emissions for large wind turbine foundations," Renewable Energy, Elsevier, vol. 83(C), pages 608-614.
    68. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    69. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    70. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    71. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    72. C. Oliveira Henriques & S. Sousa, 2023. "A Review on Economic Input-Output Analysis in the Environmental Assessment of Electricity Generation," Energies, MDPI, vol. 16(6), pages 1-26, March.
    73. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    74. Yang, Jin & Chen, Bin, 2014. "Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective," Applied Energy, Elsevier, vol. 122(C), pages 269-279.
    75. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    76. Gonçalves da Silva, C., 2010. "Renewable energies: Choosing the best options," Energy, Elsevier, vol. 35(8), pages 3179-3193.
    77. Modahl, Ingunn Saur & Raadal, Hanne Lerche & Gagnon, Luc & Bakken, Tor Haakon, 2013. "How methodological issues affect the energy indicator results for different electricity generation technologies," Energy Policy, Elsevier, vol. 63(C), pages 283-299.
    78. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    79. Wang, Yuxuan & Sun, Tianye, 2012. "Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies," Renewable Energy, Elsevier, vol. 43(C), pages 30-36.
    80. Sacchi, Romain & Besseau, Romain & Pérez-López, Paula & Blanc, Isabelle, 2019. "Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines: A parameterized model for Denmark," Renewable Energy, Elsevier, vol. 132(C), pages 1238-1250.
    81. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.

  11. Munksgaard, Jesper & Ramskov, Jacob, 2002. "Effects of internalising external production costs in a North European power market," Energy Policy, Elsevier, vol. 30(6), pages 501-510, May.

    Cited by:

    1. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    2. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Salvia, M. & Cuomo, V., 2009. "Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1039-1048, June.

  12. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.

    Cited by:

    1. Turner, Karen & Lenzen, Manfred & Wiedmann, Thomas & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 1: A technical note on combining input-output and ecological footprint analysis," Ecological Economics, Elsevier, vol. 62(1), pages 37-44, April.
    2. Mattia Cai, 2016. "Greenhouse gas emissions from tourist activities in South Tyrol," Tourism Economics, , vol. 22(6), pages 1301-1314, December.
    3. Levitt, Clinton J. & Pedersen, Morten S. & Sørensen, Anders, 2015. "Examining the efforts of a small, open economy to reduce carbon emissions: The case of Denmark," Ecological Economics, Elsevier, vol. 119(C), pages 94-106.
    4. Kharrazi, Ali & Sato, Masahiro & Yarime, Masaru & Nakayama, Hirofumi & Yu, Yadong & Kraines, Steven, 2015. "Examining the resilience of national energy systems: Measurements of diversity in production-based and consumption-based electricity in the globalization of trade networks," Energy Policy, Elsevier, vol. 87(C), pages 455-464.
    5. Court, Christa D., 2012. "Enhancing U.S. hazardous waste accounting through economic modeling," Ecological Economics, Elsevier, vol. 83(C), pages 79-89.
    6. Zhang, Yang & Hu, Shan & Yan, Da & Jiang, Yi, 2023. "Proposing a carbon emission responsibility allocation method with benchmark approach," Ecological Economics, Elsevier, vol. 213(C).
    7. Mat�as Piaggio & Vicent Alc�ntara & Emilio Padilla, 2014. "Greenhouse Gas Emissions And Economic Structure In Uruguay," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 155-176, June.
    8. Jensen, Christa D. & Munday, Max & McIntyre, Stuart & Turner, Karen, 2010. "Incorporating jurisdiction issues into regional carbon accounts under production and consumption accounting principles," SIRE Discussion Papers 2010-45, Scottish Institute for Research in Economics (SIRE).
    9. Jackson, Tim & Papathanasopoulou, Eleni, 2008. "Luxury or 'lock-in'? An exploration of unsustainable consumption in the UK: 1968 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 80-95, December.
    10. Arunima Malik & Jun Lan, 2016. "The role of outsourcing in driving global carbon emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 168-182, June.
    11. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    12. Rutger Hoekstra & Marco A. Janssen, 2002. "Environmental Responsibility and Policy in a Two Country Dynamic Input-Output Model," Tinbergen Institute Discussion Papers 02-103/3, Tinbergen Institute.
    13. Arto, I. & Rueda-Cantuche, José M. & Dietzenbacher, E. & Andreoni, V. & Mongelli, I. & Genty, A. & Villanueva, A., 2012. "The Game of Trading Jobs for Emissions," Conference papers 332231, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Xixuan Guo & Kaixiang Huang & Lanyu Li & Xiaonan Wang, 2022. "Renewable Energy for Balancing Carbon Emissions and Reducing Carbon Transfer under Global Value Chains: A Way Forward," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    15. Rosa Van Den Ende & Antoine Mandel & Agnieszka Rusinowska, 2023. "Network-based allocation of responsibility for GHG emissions," Documents de travail du Centre d'Economie de la Sorbonne 23013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    17. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Ha, Soo Junga & Turner, Karen & Hewings, Geoffrey, 2009. "An interregional input-output analysis of the pollution content of trade flows and environmental trade balances between five states in the US Mid-West," SIRE Discussion Papers 2009-43, Scottish Institute for Research in Economics (SIRE).
    19. Walsh, Conor & O'Regan, Bernadette & Moles, Richard, 2009. "Incorporating methane into ecological footprint analysis: A case study of Ireland," Ecological Economics, Elsevier, vol. 68(7), pages 1952-1962, May.
    20. Fernández-Amador, Octavio & Francois, Joseph & Oberdabernig, Doris & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Papers 1272, World Trade Institute.
    21. Youguo Zhang, 2012. "Scale, Technique and Composition Effects in Trade-Related Carbon Emissions in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 371-389, March.
    22. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    23. Jin, Wei & Xu, Linyu & Yang, Zhifeng, 2009. "Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint," Ecological Economics, Elsevier, vol. 68(12), pages 2938-2949, October.
    24. Dong, Gang & Mao, Xianqiang & Zhou, Ji & Zeng, An, 2013. "Carbon footprint accounting and dynamics and the driving forces of agricultural production in Zhejiang Province, China," Ecological Economics, Elsevier, vol. 91(C), pages 38-47.
    25. Iñaki Arto & Jordi Roca & Mònica Serrano, 2012. "Emisiones territoriales y fuga de emisiones. Análisis del caso español," Revista Iberoamericana de Economía Ecológica, Red Iberoamericana de Economía Ecológica, vol. 18, pages 73-87, Abril.
    26. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    27. Wu Xie & Shuai Hu & Fangyi Li & Xin Cao & Zhipeng Tang, 2020. "Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    28. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    29. Zixun Guo & Zhimei Gao & Wenbin Zhang, 2023. "Accounting and Decomposition of Energy Footprint: Evidence from 28 Sectors in China," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    30. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2021. "Assessing the circularity of regions: Stakes of trade of waste for treatment," ULB Institutional Repository 2013/332186, ULB -- Universite Libre de Bruxelles.
    31. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2020. "CO2 emissions of the construction sector in Spain during the real estate boom: input–output subsystem analysis and decomposition," Working Papers wpdea2003, Department of Applied Economics at Universitat Autonoma of Barcelona.
    32. Anton Hartl, 2019. "The effects of the Kyoto Protocol on the carbon trade balance," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 155(3), pages 539-574, August.
    33. Xiao, Yanyan & Norris, Catherine Benoît & Lenzen, Manfred & Norris, Gregory & Murray, Joy, 2017. "How Social Footprints of Nations Can Assist in Achieving the Sustainable Development Goals," Ecological Economics, Elsevier, vol. 135(C), pages 55-65.
    34. Munday, Max & Turner, Karen & Jones, Calvin, 2013. "Accounting for the carbon associated with regional tourism consumption," Tourism Management, Elsevier, vol. 36(C), pages 35-44.
    35. Lenzen, Manfred & Bhaduri, Anik & Moran, Daniel & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2012. "The role of scarcity in global virtual water flows," Discussion Papers 133478, University of Bonn, Center for Development Research (ZEF).
    36. De Bruin, Kelly & Yakut, Aykut Mert, 2022. "The global emissions impact of Irish consumption," Papers WP740, Economic and Social Research Institute (ESRI).
    37. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    38. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    39. Vinicius A. Vale & Fernando S. Perobelli & Ariaster B. Chimeli, 2018. "International trade, pollution, and economic structure: evidence on CO2 emissions for the North and the South," Economic Systems Research, Taylor & Francis Journals, vol. 30(1), pages 1-17, January.
    40. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    41. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
    42. John Downie & Wendy Stubbs, 2012. "Corporate Carbon Strategies and Greenhouse Gas Emission Assessments: The Implications of Scope 3 Emission Factor Selection," Business Strategy and the Environment, Wiley Blackwell, vol. 21(6), pages 412-422, September.
    43. Carlo Aall & Idun A. Husabø, 2010. "Is Eco-Efficiency a Sufficient Strategy for Achieving a Sustainable Development? The Norwegian Case," Sustainability, MDPI, vol. 2(12), pages 1-16, November.
    44. Serrano, Mònica & Dietzenbacher, Erik, 2010. "Responsibility and trade emission balances: An evaluation of approaches," Ecological Economics, Elsevier, vol. 69(11), pages 2224-2232, September.
    45. Marco Springmann & Da Zhang & Valerie Karplus, 2015. "Consumption-Based Adjustment of Emissions-Intensity Targets: An Economic Analysis for China’s Provinces," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 615-640, August.
    46. Cui, Cathy Xin & Ha, Soo Jung & Hanley, Nicholas & McGregor, Peter G & Turner, Karen & Yin, Ya Ping, 2011. "Productivity Growth, Decoupling and Pollution Leakage," Stirling Economics Discussion Papers 2011-13, University of Stirling, Division of Economics.
    47. Chen, G. & Chen, B. & Zhou, H. & Dai, P., 2013. "Life cycle carbon emission flow analysis for electricity supply system: A case study of China," Energy Policy, Elsevier, vol. 61(C), pages 1276-1284.
    48. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    49. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    50. Sanchez-Choliz, Julio & Duarte, Rosa, 2004. "CO2 emissions embodied in international trade: evidence for Spain," Energy Policy, Elsevier, vol. 32(18), pages 1999-2005, December.
    51. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    52. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    53. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    54. Bagliani, Marco & Bravo, Giangiacomo & Dalmazzone, Silvana, 2008. "A consumption-based approach to environmental Kuznets curves using the ecological footprint indicator," Ecological Economics, Elsevier, vol. 65(3), pages 650-661, April.
    55. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    56. Tarancón, Miguel Ángel & del Río, Pablo & Callejas, Fernando, 2011. "Determining the responsibility of manufacturing sectors regarding electricity consumption. The Spanish case," Energy, Elsevier, vol. 36(1), pages 46-52.
    57. Goldar, Amrita & Bhanot, Jaya & Shimpo, Kazushige, 2011. "Prioritizing towards a green export portfolio for India: An environmental input–output approach," Energy Policy, Elsevier, vol. 39(11), pages 7036-7048.
    58. Antonin Pottier & Emmanuel Combet & Jean-Michel Cayla & Simona de Lauretis & Franck Nadaud, 2021. "Who emits CO2? Landscape of ecological inequalities in France from a critical perspective," Working Papers 2021.14, Fondazione Eni Enrico Mattei.
    59. Marques, Alexandra & Rodrigues, João & Domingos, Tiago, 2013. "International trade and the geographical separation between income and enabled carbon emissions," Ecological Economics, Elsevier, vol. 89(C), pages 162-169.
    60. Bäuerle, Max Juri, 2022. "Striving for low-carbon lifestyles: An analysis of the mobility patterns of different urban household types with regard to emissions reductions in a real-world lab experiment in Berlin," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2022-601, WZB Berlin Social Science Center.
    61. Tarancon Moran, Miguel Angel & del Rio Gonzalez, Pablo, 2007. "A combined input-output and sensitivity analysis approach to analyse sector linkages and CO2 emissions," Energy Economics, Elsevier, vol. 29(3), pages 578-597, May.
    62. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    63. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    64. Karl Steininger & Pablo Munoz & Jonas Karstensen & Glen Peters & Rita Strohmaier & Erick Velazquez, 2017. "Austria’s Consumption-Based Greenhouse Gas Emissions: Identifying sectoral sources and destinations," EcoMod2017 10472, EcoMod.
    65. Cheng, Shengkui & Xu, Zengrang & Su, Yun & Zhen, Lin, 2010. "Spatial and temporal flows of China's forest resources: Development of a framework for evaluating resource efficiency," Ecological Economics, Elsevier, vol. 69(7), pages 1405-1415, May.
    66. Kakali Mukhopadhyay & Debesh Chakraborty, 2005. "Is liberalization of trade good for the environment? Evidence from India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 12(1), pages 109-136, June.
    67. Muñoz, Pablo & Strohmaier, Rita & Roca, Jordi, 2011. "On the North-South trade in the Americas and its ecological asymmetries," Ecological Economics, Elsevier, vol. 70(11), pages 1981-1990, September.
    68. Al-Amin, Abul Quasem & Jaafar, Abdul Hamid & Siwar, Chamhuri, 2008. "A Computable General Equilibrium Approach To Trade And Environmental Modelling In The Malaysian Economy," MPRA Paper 8772, University Library of Munich, Germany.
    69. Chitnis, Mona & Druckman, Angela & Hunt, Lester C. & Jackson, Tim & Milne, Scott, 2012. "Forecasting scenarios for UK household expenditure and associated GHG emissions: Outlook to 2030," Ecological Economics, Elsevier, vol. 84(C), pages 129-141.
    70. Christa Jensen & Stuart Mcintyre & Max Munday & Karen Turner, 2009. "Responsibility for regional waste generation: A single region extended input-output analysis with uni-directional trade flows," Working Papers 0924, University of Strathclyde Business School, Department of Economics.
    71. Kristinn Hermannsson & Stuart G McIntyre, 2013. "Local consumption and territorial based accounting for CO2 emissions," Working Papers 1315, University of Strathclyde Business School, Department of Economics.
    72. Christian Lininger, 2013. "Consumption-Based Approaches in International Climate Policy: An Analytical Evaluation of the Implications for Cost-Effectiveness, Carbon Leakage, and the International Income Distribution," Graz Economics Papers 2013-03, University of Graz, Department of Economics.
    73. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    74. Turner, Karen & Gilmartin, Michelle & McGregor, Peter G. & Swales, J. Kim, 2009. "The added value from adopting a CGE approach to analyse changes in environmental trade balances," SIRE Discussion Papers 2009-13, Scottish Institute for Research in Economics (SIRE).
    75. Dong, Yanli & Ishikawa, Masanobu & Liu, Xianbing & Wang, Can, 2010. "An analysis of the driving forces of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(11), pages 6784-6792, November.
    76. Wu, Ran & Ma, Tao & Schröder, Enno, 2022. "The contribution of trade to production-Based carbon dioxide emissions," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 391-406.
    77. Magnus Jiborn & Viktoras Kulionis & Astrid Kander, 2020. "Consumption versus Technology: Drivers of Global Carbon Emissions 2000–2014," Energies, MDPI, vol. 13(2), pages 1-12, January.
    78. Keisuke Nansai & Susumu Tohno & Satoru Chatani & Keiichiro Kanemoto & Shigemi Kagawa & Yasushi Kondo & Wataru Takayanagi & Manfred Lenzen, 2021. "Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    79. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    80. Lanhui Wang & Zichan Cui & Jari Kuuluvainen & Yongyu Sun, 2021. "Does Forest Industries in China Become Cleaner? A Prospective of Embodied Carbon Emission," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    81. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    82. Christa Court & Stuart McIntyre & Max Munday & Karen Turner, 2009. "Who Creates Waste? Different Perspectives on Waste Attribution in a Regional Economy," Working Papers Working Paper 2009-09, Regional Research Institute, West Virginia University.
    83. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    84. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    85. Sun, Ya-Yen, 2014. "A framework to account for the tourism carbon footprint at island destinations," Tourism Management, Elsevier, vol. 45(C), pages 16-27.
    86. Zhu, Yongbin & Shi, Yajuan & Wu, Jing & Wu, Leying & Xiong, Wen, 2018. "Exploring the Characteristics of CO2 Emissions Embodied in International Trade and the Fair Share of Responsibility," Ecological Economics, Elsevier, vol. 146(C), pages 574-587.
    87. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    88. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    89. Nong, Duy, 2020. "Development of the electricity-environmental policy CGE model (GTAP-E-PowerS): A case of the carbon tax in South Africa," Energy Policy, Elsevier, vol. 140(C).
    90. M.T. Tolmasquim & G. Machado, 2003. "Energy and Carbon Embodied in the International Trade of Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 139-155, June.
    91. Moran, Daniel D. & Wackernagel, Mathis C. & Kitzes, Justin A. & Heumann, Benjamin W. & Phan, Doantam & Goldfinger, Steven H., 2009. "Trading spaces: Calculating embodied Ecological Footprints in international trade using a Product Land Use Matrix (PLUM)," Ecological Economics, Elsevier, vol. 68(7), pages 1938-1951, May.
    92. Ying Liu & Kankesu Jayanthakumaran & Frank Neri, 2012. "Who is responsible for the CO2 emissions that China produces?," Economics Working Papers wp12-08, School of Economics, University of Wollongong, NSW, Australia.
    93. Turner, Karen & Munday, Max & McGregor, Peter & Swales, Kim, 2012. "How responsible is a region for its carbon emissions? An empirical general equilibrium analysis," Ecological Economics, Elsevier, vol. 76(C), pages 70-78.
    94. Chang, Ning, 2013. "Sharing responsibility for carbon dioxide emissions: A perspective on border tax adjustments," Energy Policy, Elsevier, vol. 59(C), pages 850-856.
    95. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    96. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    97. Carvalho, Ariovaldo Lopes de & Antunes, Carlos Henggeler & Freire, Fausto & Henriques, Carla Oliveira, 2015. "A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil," Energy, Elsevier, vol. 82(C), pages 769-785.
    98. Angela Druckman & T. Jackson & E. Papathanasopoulou & P. Bradley, 2000. "Attributing Carbon Emissions to Functional Household Needs: a Pilot Framework For the UK," Regional and Urban Modeling 283600026, EcoMod.
    99. Zafrilla, Jorge Enrique & López, Luis Antonio & Cadarso, María Ángeles & Dejuán, Óscar, 2012. "Fulfilling the Kyoto protocol in Spain: A matter of economic crisis or environmental policies?," Energy Policy, Elsevier, vol. 51(C), pages 708-719.
    100. Thomas Grebel, 2019. "What a difference carbon leakage correction makes!," Journal of Evolutionary Economics, Springer, vol. 29(3), pages 939-971, July.
    101. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    102. Jonas Karstensen & Glen P. Peters & Robbie M. Andrew, 2018. "Trends of the EU’s territorial and consumption-based emissions from 1990 to 2016," Climatic Change, Springer, vol. 151(2), pages 131-142, November.
    103. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    104. Gavrilova, Olga & Jonas, Matthias & Erb, Karlheinz & Haberl, Helmut, 2010. "International trade and Austria's livestock system: Direct and hidden carbon emission flows associated with production and consumption of products," Ecological Economics, Elsevier, vol. 69(4), pages 920-929, February.
    105. Carvalho, Terciane Sabadini & Santiago, Flaviane Souza & Perobelli, Fernando Salgueiro, 2013. "International trade and emissions: The case of the Minas Gerais state — 2005," Energy Economics, Elsevier, vol. 40(C), pages 383-395.
    106. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    107. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    108. Zhang, Yi & Fan, Ying & Xia, Yan, 2021. "Structural evolution of energy embodied in final demand as economic growth: Empirical evidence from 25 countries," Energy Policy, Elsevier, vol. 156(C).
    109. Papathanasopoulou, Eleni & Jackson, Tim, 2008. "Fossil resource trade balances: Emerging trends for the UK," Ecological Economics, Elsevier, vol. 66(2-3), pages 492-505, June.
    110. Rodrigues, João & Domingos, Tiago, 2008. "Consumer and producer environmental responsibility: Comparing two approaches," Ecological Economics, Elsevier, vol. 66(2-3), pages 533-546, June.
    111. Jordi Roca Jusmet & Emilio Padilla Rosa, 2021. "Globalización y responsabilidad en los problemas ecológicos," Revista de Economía Crítica, Asociación de Economía Crítica, vol. 31, pages 1-18.
    112. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    113. Banerjee, Suvajit, 2020. "Border vis-à-vis Domestic Carbon Adjustment: Implications of Alternative System Boundary for India to Reduce Carbon Emissions," Conference papers 333129, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    114. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    115. Sun, Ya-Yen & Cadarso, Maria Angeles & Driml, Sally, 2020. "Tourism carbon footprint inventories: A review of the environmentally extended input-output approach," Annals of Tourism Research, Elsevier, vol. 82(C).
    116. Druckman, A. & Bradley, P. & Papathanasopoulou, E. & Jackson, T., 2008. "Measuring progress towards carbon reduction in the UK," Ecological Economics, Elsevier, vol. 66(4), pages 594-604, July.
    117. Xu, Ming & Li, Ran & Crittenden, John C. & Chen, Yongsheng, 2011. "CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7381-7388.
    118. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    119. Ghertner, D. Asher & Fripp, Matthias, 2007. "Trading away damage: Quantifying environmental leakage through consumption-based, life-cycle analysis," Ecological Economics, Elsevier, vol. 63(2-3), pages 563-577, August.
    120. Gilmartin, Michelle & Swales, Kim J. & Turner, Karen, 2008. "A comparison of results from MRIO and interregional computable general equilibrium (CGE) analyses of the impacts of a positive demand shock on the ‘CO2 trade balance’ between Scotland and the rest," SIRE Discussion Papers 2008-24, Scottish Institute for Research in Economics (SIRE).
    121. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    122. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    123. Jaafar, Abdul Hamid & Al-Amin, Abul Quasem & Siwar, Chamhuri, 2008. "A CGE Analysis of the Economic Impact of Output-Specific Carbon Tax on the Malaysian Economy," MPRA Paper 10210, University Library of Munich, Germany.
    124. Marco Sakai & Anne Owen & John Barrett, 2017. "The UK’s Emissions and Employment Footprints: Exploring the Trade-Offs," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    125. Shui, Bin & Harriss, Robert C., 2006. "The role of CO2 embodiment in US-China trade," Energy Policy, Elsevier, vol. 34(18), pages 4063-4068, December.
    126. Feng, Tian-tian & Yang, Yi-sheng & Xie, Shi-yan & Dong, Jun & Ding, Luo, 2017. "Economic drivers of greenhouse gas emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 996-1006.
    127. Guo, Jie & Zou, Le-Le & Wei, Yi-Ming, 2010. "Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US," Energy Policy, Elsevier, vol. 38(3), pages 1389-1397, March.
    128. Han Sun & Chao Huang & Shan Ni, 2022. "Driving factors of consumption-based PM2.5 emissions in China: an application of the generalized Divisia index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10209-10231, August.
    129. Yunlong Zhao & Linwei Ma & Zheng Li & Weidou Ni, 2022. "A Calculation and Decomposition Method Embedding Sectoral Energy Structure for Embodied Carbon: A Case Study of China’s 28 Sectors," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    130. Gilmartin, Michelle & McGregor, Peter G & Swales, J Kim & Turner, Karen, 2011. "An integrated IO and CGE approach to analysing changes in environmental trade balances," Stirling Economics Discussion Papers 2011-04, University of Stirling, Division of Economics.
    131. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    132. Muñoz, Pablo & Steininger, Karl W., 2010. "Austria's CO2 responsibility and the carbon content of its international trade," Ecological Economics, Elsevier, vol. 69(10), pages 2003-2019, August.
    133. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    134. Marques, Alexandra & Rodrigues, João & Lenzen, Manfred & Domingos, Tiago, 2012. "Income-based environmental responsibility," Ecological Economics, Elsevier, vol. 84(C), pages 57-65.
    135. Karl Steininger & Christian Lininger & Susanne Droege & Dominic Roser & Luke Tomlinson, 2012. "Towards a Just and Cost-Effective Climate Policy: On the relevance and implications of deciding between a Production versus Consumption Based Approach," Graz Economics Papers 2012-06, University of Graz, Department of Economics.
    136. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    137. Erik Dietzenbacher & Esther Velázquez, 2006. "Virtual water and water trade in Andalusia. A study by means of an input-output model," Working Papers 06.06, Universidad Pablo de Olavide, Department of Economics.
    138. Dong, Huijuan & Geng, Yong & Fujita, Tsuyoshi & Jacques, David A., 2014. "Three accounts for regional carbon emissions from both fossil energy consumption and industrial process," Energy, Elsevier, vol. 67(C), pages 276-283.
    139. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    140. Maria Csutora & Zs�fia Vetőn� m�zner, 2014. "Proposing a beneficiary-based shared responsibility approach for calculating national carbon accounts during the post-Kyoto era," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 599-616, September.
    141. Rahel Aichele & Gabriel Felbermayr, 2011. "Carbon Footprints," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(21), pages 11-16, November.
    142. Banerjee, Suvajit, 2021. "Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India's National Emission Inventory: A recursive dynamic CGE analysis," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 68-86.
    143. Springmann, Marco, 2013. "Addressing emission transfers: carbon tariffs vs. clean-development financing," Conference papers 332294, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    144. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    145. Lenzen, Manfred & Murray, Joy, 2010. "Conceptualising environmental responsibility," Ecological Economics, Elsevier, vol. 70(2), pages 261-270, December.
    146. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    147. Andersen, Otto & Gössling, Stefan & Simonsen, Morten & Walnum, Hans Jakob & Peeters, Paul & Neiberger, Cordula, 2010. "CO2 emissions from the transport of China's exported goods," Energy Policy, Elsevier, vol. 38(10), pages 5790-5798, October.
    148. Bastianoni, Simone & Pulselli, Federico Maria & Tiezzi, Enzo, 2004. "The problem of assigning responsibility for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 49(3), pages 253-257, July.
    149. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    150. Kurt Kratena & Ina Meyer, 2010. "CO2 Emissions Embodied in Austrian International Trade," WIFO Studies, WIFO, number 39242, April.
    151. Yafei Wang & Arne Geschke & Manfred Lenzen, 2017. "Constructing a Time Series of Nested Multiregion Input–Output Tables," International Regional Science Review, , vol. 40(5), pages 476-499, September.
    152. Xiang Gao & Sandy Dall'erba & Brenna Ellison & Andre F. T. Avelino & Cuihong Yang, 2022. "When one cannot bypass the byproducts: Plastic packaging waste embedded in production and export," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1460-1474, August.
    153. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    154. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    155. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    156. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    157. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    158. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    159. Asane-Otoo, Emmanuel, 2015. "Carbon footprint and emission determinants in Africa," Energy, Elsevier, vol. 82(C), pages 426-435.
    160. Lin, Boqiang & Sun, Chuanwang, 2010. "Evaluating carbon dioxide emissions in international trade of China," Energy Policy, Elsevier, vol. 38(1), pages 613-621, January.
    161. Ipek Tunc, G. & Turut-Asik, Serap & Akbostanci, Elif, 2007. "CO2 emissions vs. CO2 responsibility: An input-output approach for the Turkish economy," Energy Policy, Elsevier, vol. 35(2), pages 855-868, February.
    162. Wencheng Zhang & Shuijun Peng, 2016. "Analysis on CO 2 Emissions Transferred from Developed Economies to China through Trade," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 24(2), pages 68-89, March.
    163. Amin, Al & Siwar, Chamhuri & Huda, Nurul & Hamid, Abdul, 2009. "Trade, Economic Development and Environment: Malaysian Experience," Bangladesh Development Studies, Bangladesh Institute of Development Studies (BIDS), vol. 32(3), pages 19-40, September.
    164. Glen Peters & Edgar Hertwich, 2006. "Structural analysis of international trade: Environmental impacts of Norway," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 155-181.
    165. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2012. "International trade and shared environmental responsibility by sector. An application to the Spanish economy," Ecological Economics, Elsevier, vol. 83(C), pages 221-235.
    166. Pilkington, Brian & Roach, Richard & Perkins, James, 2011. "Relative benefits of technology and occupant behaviour in moving towards a more energy efficient, sustainable housing paradigm," Energy Policy, Elsevier, vol. 39(9), pages 4962-4970, September.
    167. Nong, Duy & Nguyen, Trung H. & Wang, Can & Van Khuc, Quy, 2020. "The environmental and economic impact of the emissions trading scheme (ETS) in Vietnam," Energy Policy, Elsevier, vol. 140(C).
    168. McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2008. "The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data," Ecological Economics, Elsevier, vol. 66(4), pages 662-673, July.
    169. Al-Amin, Abul Quasem & Abdul Hamid, Jaafar & Chamhuri, Siwar, 2008. "Macroeconomic effects of carbon dioxide emission reduction: a computable general equilibrium analysis for Malaysia," MPRA Paper 8667, University Library of Munich, Germany.
    170. McGregor, Peter G. & Kim Swales, J. & Winning, Matthew A., 2012. "A review of the role and remit of the committee on climate change," Energy Policy, Elsevier, vol. 41(C), pages 466-473.
    171. Li, Shantong & He, Jianwu, 2011. "Impact of China’s Domestic Carbon Emission Trading Scheme," Conference papers 332101, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    172. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    173. Springmann, Marco & Zhang, Da & Xiliang, Zhang & Karplus, Valerie J., 2013. "Incorporating consumption-based emissions accounting into climate policy in China: Provincial target setting and ETS baseline allocations," Conference papers 332341, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    174. Stefan Weishaar, 2007. "CO 2 emission allowance allocation mechanisms, allocative efficiency and the environment: a static and dynamic perspective," European Journal of Law and Economics, Springer, vol. 24(1), pages 29-70, August.
    175. Dolter, Brett & Victor, Peter A., 2016. "Casting a long shadow: Demand-based accounting of Canada's greenhouse gas emissions responsibility," Ecological Economics, Elsevier, vol. 127(C), pages 156-164.
    176. Tao Song & Xinling Zou & Nuo Wang & Danyang Zhang & Yuxiang Zhao & Erdan Wang, 2023. "Prediction of China’s Carbon Peak Attainment Pathway from Both Production-Side and Consumption-Side Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    177. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    178. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    179. Li Li & Yalin Lei & Chunyan He & Sanmang Wu & Jiabin Chen, 2017. "Study on the CO2 emissions embodied in the trade of China’s steel industry: based on the input–output model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 989-1005, April.
    180. Lien-Chieh Lee & Yuan Wang & Yuanyuan Yan & Jian Zuo, 2018. "Greenhouse Gas Emissions Embodied in the Chinese International Trade of Computer Products," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    181. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    182. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    183. Tatiana Tagaeva & Vadim Gilmundinov & Lidija Kazantseva, 2016. "Ecological Situation and Environmental Protection Policy in Russian Regions," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 78-92.
    184. Zhang, Wencheng & Wei, Rui & Peng, Shuijun, 2020. "The oil-slick trade: An analysis of embodied crude oil in China's trade and consumption," Energy Economics, Elsevier, vol. 88(C).
    185. Xuecheng Wang & Xu Tang & Baosheng Zhang & Benjamin C. McLellan & Yang Lv, 2018. "Provincial Carbon Emissions Reduction Allocation Plan in China Based on Consumption Perspective," Sustainability, MDPI, vol. 10(5), pages 1-23, April.
    186. Tarancón Morán, Miguel Ángel & del Ri­o, Pablo & Albiñana, Fernando Callejas, 2008. "Tracking the genealogy of CO2 emissions in the electricity sector: An intersectoral approach applied to the Spanish case," Energy Policy, Elsevier, vol. 36(6), pages 1915-1926, June.
    187. Edgar Towa & Vanessa Zeller & Wouter M. J. Achten, 2021. "Assessing the circularity of regions: Stakes of trade of waste for treatment," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 834-847, August.
    188. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2010. "CO2 emissions of international freight transport and offshoring: Measurement and allocation," Ecological Economics, Elsevier, vol. 69(8), pages 1682-1694, June.
    189. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    190. Xuemei Jiang & Quanrun Chen & Cuihong Yang, 2018. "A Comparison Of Producer, Consumer And Shared Responsibility Based On A New Inter-Country Input–Output Table Capturing Trade Heterogeneity," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 295-311, March.
    191. Choudhary, Alok & Suman, Ravi & Dixit, Vijaya & Tiwari, M.K. & Fernandes, Kiran Jude & Chang, Pei-Chann, 2015. "An optimization model for a monopolistic firm serving an environmentally conscious market: Use of chemical reaction optimization algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 409-420.
    192. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    193. Birgit BEDNAR-FRIEDL & Thomas SCHINKO & Karl STEININGER, 2010. "A CGE Analysis of Climate Policy Options after Copenhagen: Bottom-up Approaches, Border Tax Adjustments, and Carbon Leakage," EcoMod2010 259600022, EcoMod.

  13. Mette Wier & Manfred Lenzen & Jesper Munksgaard & Sinne Smed, 2001. "Effects of Household Consumption Patterns on CO2 Requirements," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 259-274.

    Cited by:

    1. João-Pedro Ferreira & Pedro Ramos & Luís Cruz & Eduardo Barata, 2018. "The opportunity costs of commuting: the value of a commuting satellite account framework with an example from Lisbon Metropolitan Area," Economic Systems Research, Taylor & Francis Journals, vol. 30(1), pages 105-119, January.
    2. Shigemi Kagawa & Hajime Inamura & Yuichi Moriguchi, 2002. "The Invisible Multipliers of Joint-products," Economic Systems Research, Taylor & Francis Journals, vol. 14(2), pages 185-203, June.
    3. Fally, Thibault & Caron, Justin, 2018. "Per Capita Income, Consumption Patterns, and CO2 Emissions," CEPR Discussion Papers 13092, C.E.P.R. Discussion Papers.
    4. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    5. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    6. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    7. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    8. Pothen, Frank & Tovar Reanos, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Hannover Economic Papers (HEP) dp-627, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Alice Whetstone & Yuliya Kalmykova & Leonardo Rosado & Alexandra Lavers Westin, 2020. "Informing Sustainable Consumption in Urban Districts: A Method for Transforming Household Expenditures into Physical Quantities," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    10. Klenert, David & Mattauch, Linus, 2015. "How to make a carbon tax reform progressive: The role of subsistence consumption," MPRA Paper 84290, University Library of Munich, Germany.
    11. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    12. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2010. "The impact of household consumption patterns on emissions in Spain," Energy Economics, Elsevier, vol. 32(1), pages 176-185, January.
    13. Jordi Roca & Mònica Serrano, 2006. "Income growth and atmospheric pollution in Spain: an Input-Output approach," UHE Working papers 2006_04, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    14. Zhang, Yan & Zheng, Hongmei & Yang, Zhifeng & Su, Meirong & Liu, Gengyuan & Li, Yanxian, 2015. "Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China," Energy Policy, Elsevier, vol. 86(C), pages 651-663.
    15. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    16. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    17. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    18. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Fernando Perobelli & Vinicius Vale, 2014. "Emissions structure: a systemic analysis to Brazilian economy ? 2003 and 2009," ERSA conference papers ersa14p1409, European Regional Science Association.
    20. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    21. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    22. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    23. Bjelle, Eivind Lekve & Wiebe, Kirsten S. & Többen, Johannes & Tisserant, Alexandre & Ivanova, Diana & Vita, Gibran & Wood, Richard, 2021. "Future changes in consumption: The income effect on greenhouse gas emissions," Energy Economics, Elsevier, vol. 95(C).
    24. Antonin Pottier & Emmanuel Combet & Jean-Michel Cayla & Simona de Lauretis & Franck Nadaud, 2021. "Who emits CO2? Landscape of ecological inequalities in France from a critical perspective," Working Papers 2021.14, Fondazione Eni Enrico Mattei.
    25. Feld, Lars P. & Schmidt, Christoph M. & Schnabel, Isabel & Truger, Achim & Wieland, Volker, 2019. "Aufbruch zu einer neuen Klimapolitik," Special Reports / Sondergutachten, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung, number 200981.
    26. Ornetzeder, Michael & Hertwich, Edgar G. & Hubacek, Klaus & Korytarova, Katarina & Haas, Willi, 2008. "The environmental effect of car-free housing: A case in Vienna," Ecological Economics, Elsevier, vol. 65(3), pages 516-530, April.
    27. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    28. da Silva Freitas, Lucio Flavio & de Santana Ribeiro, Luiz Carlos & de Souza, Kênia Barreiro & Hewings, Geoffrey John Dennis, 2016. "The distributional effects of emissions taxation in Brazil and their implications for climate policy," Energy Economics, Elsevier, vol. 59(C), pages 37-44.
    29. Petra Zsuzsa Lévay; & Tim Goedemé & Gerlinde Verbist;, 2022. "Income and expenditure elasticity of household carbon footprints. Some methodological considerations," Working Papers 2202, Herman Deleeck Centre for Social Policy, University of Antwerp.
    30. Seppo Junnila & Juudit Ottelin & Laura Leinikka, 2018. "Influence of Reduced Ownership on the Environmental Benefits of the Circular Economy," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    31. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    32. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
    33. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    34. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    35. Haitao Zheng & Qi Fang & Cheng Wang & Huiwen Wang & Ruoen Ren, 2017. "China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    36. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    37. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2017. "The changing of the relationships between carbon footprints and final demand: Panel data evidence for 40 major countries," Energy Economics, Elsevier, vol. 61(C), pages 8-20.
    38. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    39. Preuß, Malte & Reuter, Wolf Heinrich & Schmidt, Christoph M., 2019. "Verteilungswirkung einer CO2-Bepreisung in Deutschland," Working Papers 08/2019, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    40. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    41. Miah, Md. Danesh & Kabir, Rashel Rana Mohammad Sirajul & Koike, Masao & Akther, Shalina & Yong Shin, Man, 2010. "Rural household energy consumption pattern in the disregarded villages of Bangladesh," Energy Policy, Elsevier, vol. 38(2), pages 997-1003, February.
    42. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    43. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    44. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2012. "Social groups and CO2 emissions in Spanish households," Energy Policy, Elsevier, vol. 44(C), pages 441-450.
    45. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    46. Edeltraud Haselsteiner & Barbara Smetschka & Alexander Remesch & Veronika Gaube, 2015. "Time-Use Patterns and Sustainable Urban Form: A Case Study to Explore Potential Links," Sustainability, MDPI, vol. 7(6), pages 1-29, June.
    47. Wier, Mette & Birr-Pedersen, Katja & Jacobsen, Henrik Klinge & Klok, Jacob, 2005. "Are CO2 taxes regressive? Evidence from the Danish experience," Ecological Economics, Elsevier, vol. 52(2), pages 239-251, January.
    48. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    49. Marco Baudino, 2020. "Environmental Engel curves in Italy: A spatial econometric investigation," Papers in Regional Science, Wiley Blackwell, vol. 99(4), pages 999-1018, August.
    50. Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
    51. Rahmani, Roham & Bakhshoodeh, Mohammad & Zibaei, Mansour & Heijman, Wim J.M., 2012. "Economic and Environmental Impacts of Dietary Changes in Iran: An Input-Output Analysis," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2(4), pages 1-17, April.
    52. Manfred Lenzen & Robert A. Cummins, 2013. "Happiness versus the Environment—A Case Study of Australian Lifestyles," Challenges, MDPI, vol. 4(1), pages 1-19, May.

  14. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.

    Cited by:

    1. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    2. Mette Wier & Manfred Lenzen & Jesper Munksgaard & Sinne Smed, 2001. "Effects of Household Consumption Patterns on CO2 Requirements," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 259-274.
    3. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    4. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    5. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    6. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    7. Fan, Jianshuang & Zhou, Lin & Zhang, Yan & Shao, Shuai & Ma, Miao, 2021. "How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas," Energy Economics, Elsevier, vol. 100(C).
    8. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    9. Kopp, Thomas & Nabernegg, Markus, 2022. "Inequality and Environmental Impact – Can the Two Be Reduced Jointly?," Ecological Economics, Elsevier, vol. 201(C).
    10. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    11. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    12. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2010. "The impact of household consumption patterns on emissions in Spain," Energy Economics, Elsevier, vol. 32(1), pages 176-185, January.
    13. Xiao-Wei Ma & Jia Du & Meng-Ying Zhang & Yi Ye, 2016. "Indirect carbon emissions from household consumption between China and the USA: based on an input–output model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 399-410, November.
    14. Jordi Roca & Mònica Serrano, 2006. "Income growth and atmospheric pollution in Spain: an Input-Output approach," UHE Working papers 2006_04, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    15. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    16. Zhang, Moyi & Huang, Xian-Jin, 2012. "Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China," Energy, Elsevier, vol. 44(1), pages 515-526.
    17. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    18. Fernando Perobelli & Vinicius Vale, 2014. "Emissions structure: a systemic analysis to Brazilian economy ? 2003 and 2009," ERSA conference papers ersa14p1409, European Regional Science Association.
    19. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    20. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    21. Nässén, Jonas, 2014. "Determinants of greenhouse gas emissions from Swedish private consumption: Time-series and cross-sectional analyses," Energy, Elsevier, vol. 66(C), pages 98-106.
    22. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    23. Jordi Roca & Monica Serrano, 2008. "Embodied pollution in Spanish household consumption: a disaggregate analysis," Working Papers in Economics 204, Universitat de Barcelona. Espai de Recerca en Economia.
    24. Perobelli, Fernando Salgueiro & Faria, Weslem Rodrigues & Vale, Vinicius de Almeida, 2015. "The increase in Brazilian household income and its impact on CO2 emissions: Evidence for 2003 and 2009 from input–output tables," Energy Economics, Elsevier, vol. 52(PA), pages 228-239.
    25. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    26. Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
    27. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    28. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    29. Aditya Prana Iswara & Jerry Dwi Trijoyo Purnomo & Lin-Han Chiang Hsieh & Aulia Ulfah Farahdiba & Andrian Dolfriandra Huruta, 2022. "More Is More? The Inquiry of Reducing Greenhouse Gas Emissions in the Upstream Petroleum Fields of Indonesia," Sustainability, MDPI, vol. 14(11), pages 1-18, June.
    30. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    31. Kieran Donaghy & Clifford R. Wymer & Geoffrey J. D. Hewings & Soo Jung Ha, 2017. "Structural change in the Chicago region and the impact on emission inventories in a continuous-time modeling approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-28, December.
    32. Zeballos, Eliana & Sinclair, Wilson & Park, Timothy, 2021. "Understanding the Components of U.S. Food Expenditures During Recessionary and Non-Recessionary Periods," USDA Miscellaneous 316348, United States Department of Agriculture.
    33. Bjelle, Eivind Lekve & Wiebe, Kirsten S. & Többen, Johannes & Tisserant, Alexandre & Ivanova, Diana & Vita, Gibran & Wood, Richard, 2021. "Future changes in consumption: The income effect on greenhouse gas emissions," Energy Economics, Elsevier, vol. 95(C).
    34. Vringer, Kees & Aalbers, Theo & Blok, Kornelis, 2007. "Household energy requirement and value patterns," Energy Policy, Elsevier, vol. 35(1), pages 553-566, January.
    35. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    36. Ornetzeder, Michael & Hertwich, Edgar G. & Hubacek, Klaus & Korytarova, Katarina & Haas, Willi, 2008. "The environmental effect of car-free housing: A case in Vienna," Ecological Economics, Elsevier, vol. 65(3), pages 516-530, April.
    37. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    38. Rosa Duarte & Alfredo J. Mainar-Causapé & Julio Sánchez Chóliz, 2017. "Domestic GHG emissions and the responsibility of households in Spain: looking for regional differences," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5397-5411, November.
    39. Guerra, Ana-Isabel & Sancho, Ferran, 2018. "Positive and normative analysis of the output opportunity costs of GHG emissions reductions: A comparison of the six largest EU economies," Energy Policy, Elsevier, vol. 122(C), pages 45-62.
    40. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    41. Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
    42. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    43. Ayu Washizu & Satoshi Nakano, 2010. "On The Environmental Impact Of Consumer Lifestyles - Using A Japanese Environmental Input-Output Table And The Linear Expenditure System Demand Function," Economic Systems Research, Taylor & Francis Journals, vol. 22(2), pages 181-192.
    44. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    45. Qu, Jiansheng & Zeng, Jingjing & Li, Yan & Wang, Qin & Maraseni, Tek & Zhang, Lihua & Zhang, Zhiqiang & Clarke-Sather, Abigail, 2013. "Household carbon dioxide emissions from peasants and herdsmen in northwestern arid-alpine regions, China," Energy Policy, Elsevier, vol. 57(C), pages 133-140.
    46. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
    47. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
    48. René M.J. Benders & Henri C. Moll & Durk S. Nijdam, 2012. "From Energy to Environmental Analysis," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 163-175, April.
    49. Li, Zhigang & Yuan, Jia & Song, Frank & Wei, Shangjin, 2014. "Is economic rebalancing toward consumption “greener”? Evidence from visibility in China, 1984–2006," Journal of Comparative Economics, Elsevier, vol. 42(4), pages 1021-1032.
    50. Mònica Serrano & Jordi Roca, 2007. "Atmospheric Pollution and Consumption Patterns in Spain: An Input-Output Approach," Working Papers 2007.62, Fondazione Eni Enrico Mattei.
    51. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    52. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    53. Jaeseok Lee & Jongmin Yu, 2017. "Market Analysis during the First Year of Korea Emission Trading Scheme," Energies, MDPI, vol. 10(12), pages 1-13, November.
    54. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    55. Zhen-Hua Feng & Le-Le Zou & Yi-Ming Wei, 2010. "The impact of household consumption on energy use and CO2 emissions in China," CEEP-BIT Working Papers 6, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    56. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    57. Stacey A. Rich & Sharon Hanna & Bradley J. Wright, 2017. "Simply Satisfied: The Role of Psychological Need Satisfaction in the Life Satisfaction of Voluntary Simplifiers," Journal of Happiness Studies, Springer, vol. 18(1), pages 89-105, February.
    58. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    59. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    60. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    61. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    62. Kazi Sohag & Rawshan Begum & Sharifah Abdullah, 2015. "Dynamic impact of household consumption on its CO 2 emissions in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(5), pages 1031-1043, October.
    63. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    64. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    65. Zakari, Abdulrasheed & Khan, Irfan & Tawiah, Vincent & Alvarado, Rafael & Li, Guo, 2022. "The production and consumption of oil in Africa: The environmental implications," Resources Policy, Elsevier, vol. 78(C).
    66. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    67. José M. Belbute & Alfredo M. Pereira, 2021. "The Relationship between Consumption and CO 2 Emissions: Evidence for Portugal," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
    68. Hamamoto, Mitsutsugu, 2013. "Energy-saving behavior and marginal abatement cost for household CO2 emissions," Energy Policy, Elsevier, vol. 63(C), pages 809-813.
    69. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    70. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    71. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2012. "Social groups and CO2 emissions in Spanish households," Energy Policy, Elsevier, vol. 44(C), pages 441-450.
    72. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    73. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    74. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    75. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    76. Fikru, Mahelet G. & Kisswani, Khalid M., 2023. "Environmental impacts of household energy use in ASEAN-5 countries: Are there asymmetric effects?," Energy Policy, Elsevier, vol. 182(C).
    77. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
    78. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    79. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    80. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    81. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    82. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    83. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    84. Loures, L. & Ferreira, P., 2019. "Energy consumption as a condition for per capita carbon dioxide emission growth: The results of a qualitative comparative analysis in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 220-225.

  15. Munksgaard, Jesper & Larsen, Anders, 1998. "Socio-economic assessment of wind power--lessons from Denmark," Energy Policy, Elsevier, vol. 26(2), pages 85-93, February.

    Cited by:

    1. Larsen, Anders & Jensen, Mette, 1999. "Evaluations of energy audits and the regulator," Energy Policy, Elsevier, vol. 27(9), pages 557-564, September.
    2. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    3. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    4. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.
    5. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    6. Burton, Jonathan & Hubacek, Klaus, 2007. "Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments," Energy Policy, Elsevier, vol. 35(12), pages 6402-6412, December.

  16. Olsen, Ole Jess & Munksgaard, Jesper, 1998. "Cogeneration and taxation in a liberalized Nordic power market," Utilities Policy, Elsevier, vol. 7(1), pages 23-33, March.

    Cited by:

    1. Finn Roar Aune & Torstein Bye & Tor Arnt Johnsen, 2000. "Gas power generation in Norway: Good or bad for the climate? Revised version," Discussion Papers 286, Statistics Norway, Research Department.
    2. Linden, Mikael & Peltola-Ojala, Päivi, 2010. "The deregulation effects of Finnish electricity markets on district heating prices," Energy Economics, Elsevier, vol. 32(5), pages 1191-1198, September.
    3. AGRELL, Per J. & BOGETOF, Peter, 2005. "Economic and environment efficiency of district heating plants," LIDAM Reprints CORE 1838, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Khoodaruth, A. & Elahee, M.K., 2013. "Use of higher fibre cane for increasing cogenerated electricity: Policy implications for Mauritius," Utilities Policy, Elsevier, vol. 26(C), pages 67-75.
    5. Møller Sneum, Daniel & Sandberg, Eli & Koduvere, Hardi & Olsen, Ole Jess & Blumberga, Dagnija, 2018. "Policy incentives for flexible district heating in the Baltic countries," Utilities Policy, Elsevier, vol. 51(C), pages 61-72.
    6. Sneum, Daniel Møller & González, Mario Garzón & Gea-Bermúdez, Juan, 2021. "Increased heat-electricity sector coupling by constraining biomass use?," Energy, Elsevier, vol. 222(C).

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.