IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v31y2014icp270-288.html
   My bibliography  Save this article

Wind energy: Increasing deployment, rising environmental concerns

Author

Listed:
  • Tabassum-Abbasi,
  • Premalatha, M.
  • Abbasi, Tasneem
  • Abbasi, S.A.

Abstract

Of all the renewable energy sources (RESs)―except direct solar heat and light―wind energy is believed to have the least adverse environmental impacts. It is also one of the RES which has become economically affordable much before several other RESs have. As a result, next to biomass (and excluding large hydro), wind energy is the RES being most extensively tapped by the world at present. Despite carrying the drawback of intermittency, wind energy has found favor due to its perceived twin virtues of relatively lesser production cost and environment-friendliness.

Suggested Citation

  • Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
  • Handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:270-288
    DOI: 10.1016/j.rser.2013.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113007685
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladenburg, Jacob, 2009. "Visual impact assessment of offshore wind farms and prior experience," Applied Energy, Elsevier, vol. 86(3), pages 380-387, March.
    2. Abbasi, Tasneem & Abbasi, S.A., 2011. "Decarbonization of fossil fuels as a strategy to control global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1828-1834, May.
    3. Mulvaney, Kate K. & Woodson, Patrick & Prokopy, Linda Stalker, 2013. "A tale of three counties: Understanding wind development in the rural Midwestern United States," Energy Policy, Elsevier, vol. 56(C), pages 322-330.
    4. Westerberg, Vanja & Jacobsen, Jette Bredahl & Lifran, Robert, 2013. "The case for offshore wind farms, artificial reefs and sustainable tourism in the French mediterranean," Tourism Management, Elsevier, vol. 34(C), pages 172-183.
    5. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    6. Athanas, Andrea K. & McCormick, Nadine, 2013. "Clean energy that safeguards ecosystems and livelihoods: Integrated assessments to unleash full sustainable potential for renewable energy," Renewable Energy, Elsevier, vol. 49(C), pages 25-28.
    7. Tsoutsos, Theocharis & Tsouchlaraki, Androniki & Tsiropoulos, Manolis & Serpetsidakis, Michalis, 2009. "Visual impact evaluation of a wind park in a Greek island," Applied Energy, Elsevier, vol. 86(4), pages 546-553, April.
    8. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    9. Shaahid, S.M. & Al-Hadhrami, L.M. & Rahman, M.K., 2013. "Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 589-597.
    10. Walsh-Thomas, Jenell M. & Cervone, Guido & Agouris, Peggy & Manca, Germana, 2012. "Further evidence of impacts of large-scale wind farms on land surface temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6432-6437.
    11. Pedersen, Eja & van den Berg, Frits & Bakker, Roel & Bouma, Jelte, 2010. "Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound," Energy Policy, Elsevier, vol. 38(5), pages 2520-2527, May.
    12. Christos Zografos & Joan Martínez-Alier, 2009. "The Politics of Landscape Value: A Case Study of Wind Farm Conflict in Rural Catalonia," Environment and Planning A, , vol. 41(7), pages 1726-1744, July.
    13. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    14. Hurtado, Juan Pablo & Fernández, Joaquín & Parrondo, Jorge L. & Blanco, Eduardo, 2004. "Spanish method of visual impact evaluation in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 483-491, October.
    15. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    16. Abbasi, Tasneem & Abbasi, S.A., 2010. "Production of clean energy by anaerobic digestion of phytomass--New prospects for a global warming amelioration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1653-1659, August.
    17. Dolman, Sarah & Simmonds, Mark, 2010. "Towards best environmental practice for cetacean conservation in developing Scotland's marine renewable energy," Marine Policy, Elsevier, vol. 34(5), pages 1021-1027, September.
    18. Abbasi, S. A. & Abbasi, Naseema, 2000. "The likely adverse environmental impacts of renewable energy sources," Applied Energy, Elsevier, vol. 65(1-4), pages 121-144, April.
    19. Magdalena R. V. Sta. Maria & Mark Z. Jacobson, 2009. "Investigating the Effect of Large Wind Farms on Energy in the Atmosphere," Energies, MDPI, Open Access Journal, vol. 2(4), pages 1-23, September.
    20. Ackermann, Thomas & Söder, Lennart, 2000. "Wind energy technology and current status: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(4), pages 315-374, December.
    21. Lovich, Jeffrey E. & Ennen, Joshua R., 2013. "Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife," Applied Energy, Elsevier, vol. 103(C), pages 52-60.
    22. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
    23. Tampakis, Stilianos & Τsantopoulos, Georgios & Arabatzis, Garyfallos & Rerras, Ioannis, 2013. "Citizens’ views on various forms of energy and their contribution to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 473-482.
    24. Jallouli, J. & Moreau, G., 2009. "An immersive path-based study of wind turbines' landscape: A French case in Plouguin," Renewable Energy, Elsevier, vol. 34(3), pages 597-607.
    25. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    26. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    27. Alvarez-Farizo, Begona & Hanley, Nick, 2002. "Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms. An example from Spain," Energy Policy, Elsevier, vol. 30(2), pages 107-116, January.
    28. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    29. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    30. Lima, Fátima & Ferreira, Paula & Vieira, Filipa, 2013. "Strategic impact management of wind power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 277-290.
    31. Abbasi, Tasneem & Abbasi, S.A., 2011. "'Renewable' hydrogen: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3034-3040, August.
    32. Tremeac, Brice & Meunier, Francis, 2009. "Life cycle analysis of 4.5Â MW and 250Â W wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2104-2110, October.
    33. Kaldellis, J.K. & Kapsali, M. & Kaldelli, El. & Katsanou, Ev., 2013. "Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications," Renewable Energy, Elsevier, vol. 52(C), pages 197-208.
    34. McCubbin, Donald & Sovacool, Benjamin K., 2013. "Quantifying the health and environmental benefits of wind power to natural gas," Energy Policy, Elsevier, vol. 53(C), pages 429-441.
    35. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    36. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    37. Sharma, Atul & Srivastava, Jaya & Kar, Sanjay Kumar & Kumar, Anil, 2012. "Wind energy status in India: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1157-1164.
    38. Abbasi, Tasneem & Premalatha, M. & Abbasi, S.A., 2011. "The return to renewables: Will it help in global warming control?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 891-894, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasi, S.A. & Tabassum-Abbasi, & Abbasi, Tasneem, 2016. "Impact of wind-energy generation on climate: A rising spectre," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1591-1598.
    2. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
    3. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Mirasgedis, S. & Tourkolias, C. & Tzovla, E. & Diakoulaki, D., 2014. "Valuing the visual impact of wind farms: An application in South Evia, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 296-311.
    6. Manchado, Cristina & Gomez-Jauregui, Valentin & Otero, César, 2015. "A review on the Spanish Method of visual impact assessment of wind farms: SPM2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 756-767.
    7. Manchado, Cristina & Gomez-Jauregui, Valentin & Lizcano, Piedad E. & Iglesias, Andres & Galvez, Akemi & Otero, Cesar, 2019. "Wind farm repowering guided by visual impact criteria," Renewable Energy, Elsevier, vol. 135(C), pages 197-207.
    8. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2011. "On the applicability of the visual impact assessment OAISPP tool to photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 845-850, January.
    9. Premalatha, M. & Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "The promise and the performance of the world's first two zero carbon eco-cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 660-669.
    10. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    11. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    12. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    13. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    14. Molnarova, Kristina & Sklenicka, Petr & Stiborek, Jiri & Svobodova, Kamila & Salek, Miroslav & Brabec, Elizabeth, 2012. "Visual preferences for wind turbines: Location, numbers and respondent characteristics," Applied Energy, Elsevier, vol. 92(C), pages 269-278.
    15. Manchado, Cristina & Otero, César & Gómez-Jáuregui, Valentín & Arias, Rubén & Bruschi, Viola & Cendrero, Antonio, 2013. "Visibility analysis and visibility software for the optimisation of wind farm design," Renewable Energy, Elsevier, vol. 60(C), pages 388-401.
    16. Fernandez-Jimenez, L. Alfredo & Mendoza-Villena, Montserrat & Zorzano-Santamaria, Pedro & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro & Zorzano-Alba, Enrique & Falces, Alberto, 2015. "Site selection for new PV power plants based on their observability," Renewable Energy, Elsevier, vol. 78(C), pages 7-15.
    17. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    18. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    19. Teisl, Mario F. & Noblet, Caroline L. & Corey, Richard R. & Giudice, Nicholas A., 2018. "Seeing clearly in a virtual reality: Tourist reactions to an offshore wind project," Energy Policy, Elsevier, vol. 122(C), pages 601-611.
    20. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:270-288. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.