IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp7-15.html
   My bibliography  Save this article

Site selection for new PV power plants based on their observability

Author

Listed:
  • Fernandez-Jimenez, L. Alfredo
  • Mendoza-Villena, Montserrat
  • Zorzano-Santamaria, Pedro
  • Garcia-Garrido, Eduardo
  • Lara-Santillan, Pedro
  • Zorzano-Alba, Enrique
  • Falces, Alberto

Abstract

Despite the advantages that power plants based on renewable energies offer, there are some restrictions to the social acceptance of these facilities. One of these restrictions is the visual impact that large power plants may generate on people. This paper presents a new methodology for ranking the feasible places in a zone for the construction of new photovoltaic (PV) power plants according to their visibility. The methodology is based on the fuzzy viewshed and the distance decay methods, which enable to calculate the maximum number of hours in a mean day in which the new PV plant may be viewed by each possible observer. This number is related to the inhabitants in the zone, the size of the plant, the possible observers from paths and roads, and their distance to the PV plant. The proposed methodology is implemented in a Geographical Information System which allows the presentation of visual results that help to identify the best areas in the zone under study. This methodology can be useful to local authorities who have to authorize the installation of the new power plant, or investors who are trying to find the best locations from the point of view of visual impact.

Suggested Citation

  • Fernandez-Jimenez, L. Alfredo & Mendoza-Villena, Montserrat & Zorzano-Santamaria, Pedro & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro & Zorzano-Alba, Enrique & Falces, Alberto, 2015. "Site selection for new PV power plants based on their observability," Renewable Energy, Elsevier, vol. 78(C), pages 7-15.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:7-15
    DOI: 10.1016/j.renene.2014.12.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400901X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsoutsos, Theocharis & Tsouchlaraki, Androniki & Tsiropoulos, Manolis & Serpetsidakis, Michalis, 2009. "Visual impact evaluation of a wind park in a Greek island," Applied Energy, Elsevier, vol. 86(4), pages 546-553, April.
    2. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    3. Torres-Sibille, Ana del Carmen & Cloquell-Ballester, Vicente-Agustín & Cloquell-Ballester, Víctor-Andrés & Artacho Ramírez, Miguel Ángel, 2009. "Aesthetic impact assessment of solar power plants: An objective and a subjective approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 986-999, June.
    4. Heras-Saizarbitoria, Iñaki & Cilleruelo, Ernesto & Zamanillo, Ibon, 2011. "Public acceptance of renewables and the media: an analysis of the Spanish PV solar experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4685-4696.
    5. Hurtado, Juan Pablo & Fernández, Joaquín & Parrondo, Jorge L. & Blanco, Eduardo, 2004. "Spanish method of visual impact evaluation in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 483-491, October.
    6. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    7. Manchado, Cristina & Otero, César & Gómez-Jáuregui, Valentín & Arias, Rubén & Bruschi, Viola & Cendrero, Antonio, 2013. "Visibility analysis and visibility software for the optimisation of wind farm design," Renewable Energy, Elsevier, vol. 60(C), pages 388-401.
    8. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    9. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    10. Ribeiro, Fernando & Ferreira, Paula & Araújo, Madalena, 2011. "The inclusion of social aspects in power planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4361-4369.
    11. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.
    12. Torres Sibille, Ana del Carmen & Cloquell-Ballester, Víctor-Andrés & Cloquell-Ballester, Vicente-Agustín & Darton, Richard, 2009. "Development and validation of a multicriteria indicator for the assessment of objective aesthetic impact of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 40-66, January.
    13. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    14. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2011. "On the applicability of the visual impact assessment OAISPP tool to photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 845-850, January.
    2. Bevk, Tadej & Golobič, Mojca, 2020. "Contentious eye-catchers: Perceptions of landscapes changed by solar power plants in Slovenia," Renewable Energy, Elsevier, vol. 152(C), pages 999-1010.
    3. Manchado, Cristina & Gomez-Jauregui, Valentin & Otero, César, 2015. "A review on the Spanish Method of visual impact assessment of wind farms: SPM2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 756-767.
    4. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Manchado, Cristina & Gomez-Jauregui, Valentin & Lizcano, Piedad E. & Iglesias, Andres & Galvez, Akemi & Otero, Cesar, 2019. "Wind farm repowering guided by visual impact criteria," Renewable Energy, Elsevier, vol. 135(C), pages 197-207.
    6. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    7. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    8. Manchado, Cristina & Otero, César & Gómez-Jáuregui, Valentín & Arias, Rubén & Bruschi, Viola & Cendrero, Antonio, 2013. "Visibility analysis and visibility software for the optimisation of wind farm design," Renewable Energy, Elsevier, vol. 60(C), pages 388-401.
    9. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    10. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    12. Chiabrando, Roberto & Fabrizio, Enrico & Garnero, Gabriele, 2009. "The territorial and landscape impacts of photovoltaic systems: Definition of impacts and assessment of the glare risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2441-2451, December.
    13. de la Hoz, Jordi & Martín, Helena & Martins, Blanca & Matas, José & Miret, Jaume, 2013. "Evaluating the impact of the administrative procedure and the landscape policy on grid connected PV systems (GCPVS) on-floor in Spain in the period 2004–2008: To which extent a limiting factor?," Energy Policy, Elsevier, vol. 63(C), pages 147-167.
    14. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    15. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    16. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    17. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
    20. Rodrigo A. Estévez & Valeria Espinoza & Roberto D. Ponce Oliva & Felipe Vásquez-Lavín & Stefan Gelcich, 2021. "Multi-Criteria Decision Analysis for Renewable Energies: Research Trends, Gaps and the Challenge of Improving Participation," Sustainability, MDPI, vol. 13(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:7-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.