IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1974-d120722.html
   My bibliography  Save this article

Market Analysis during the First Year of Korea Emission Trading Scheme

Author

Listed:
  • Jaeseok Lee

    (Energy Institute, Seoul Energy Corporation, 20, Mokdongseo-ro, Yangcheon-gu, Seoul 07978, Korea)

  • Jongmin Yu

    (Department of Economics, Hongik University 94, Wausan-ro, Mapogu, Seoul 121-791, Korea)

Abstract

To derive the supply and demand issues during the first phase of the Korea Emission Trading Scheme (KETS), we investigated the excess or shortage, and the carry-over inflow of carbon emission permits for all of the domestic industries and major corporations. In particular, this study explored the supply and future prospects of offset credits, as well as the allocated permits, by forecasting the inflows of offset credits using the amount of certified reduction in domestic boundaries and overseas sources. We observed both the supply and demand of permits and changes in carbon dioxide (CO 2 ) emission levels during the first phase (2015–2017) by comparing the estimated emission levels and the total permit supply. The results showed that permits were either in surplus or insufficient, depending on the sub-sector, and that a surplus in the supply of permits would occur if companies do not carry over more than 70 million tons of permits to the next period.

Suggested Citation

  • Jaeseok Lee & Jongmin Yu, 2017. "Market Analysis during the First Year of Korea Emission Trading Scheme," Energies, MDPI, vol. 10(12), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1974-:d:120722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jongmin Yu & Sejoong Lee, 2017. "The Impact of Greenhouse Gas Emissions on Corporate Social Responsibility in Korea," Sustainability, MDPI, vol. 9(7), pages 1-15, June.
    2. Park, Hojeong & Hong, Won Kyung, 2014. "Korea׳s emission trading scheme and policy design issues to achieve market-efficiency and abatement targets," Energy Policy, Elsevier, vol. 75(C), pages 73-83.
    3. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    4. Yu, Jongmin & Mallory, Mindy L., 2014. "Exchange rate effect on carbon credit price via energy markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 145-161.
    5. Lee, Jaeseok & Yue, Chengyan, 2017. "Impacts of the US dollar (USD) exchange rate on economic growth and the environment in the United States," Energy Economics, Elsevier, vol. 64(C), pages 170-176.
    6. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    7. Sahbi Farhani & Jaleleddine Ben Rejeb, 2012. "Energy Consumption, Economic Growth and CO2 Emissions: Evidence from Panel Data for MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 2(2), pages 71-81.
    8. repec:dau:papers:123456789/4210 is not listed on IDEAS
    9. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jae‐Do Song, 2023. "Excessive banking preference in emissions trading," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 448-458, January.
    2. Ye Duan & Zenglin Han & Hailin Mu & Jun Yang & Yonghua Li, 2019. "Research on the Impact of Various Emission Reduction Policies on China’s Iron and Steel Industry Production and Economic Level under the Carbon Trading Mechanism," Energies, MDPI, vol. 12(9), pages 1-26, April.
    3. Fei Ye & Lixu Li & Zhiqiang Wang & Yina Li, 2018. "An Asymmetric Nash Bargaining Model for Carbon Emission Quota Allocation among Industries: Evidence from Guangdong Province, China," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    4. Kim, Pyung & Bae, Hyunhoe, 2022. "Do firms respond differently to the carbon pricing by industrial sector? How and why? A comparison between manufacturing and electricity generation sectors using firm-level panel data in Korea," Energy Policy, Elsevier, vol. 162(C).
    5. Jae-Do Song & Young-Hwan Ahn, 2021. "Price Discovery of Consignment Auctions for Emission Permits," Energies, MDPI, vol. 14(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    2. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    3. Lee, Jaeseok & Yue, Chengyan, 2017. "Impacts of the US dollar (USD) exchange rate on economic growth and the environment in the United States," Energy Economics, Elsevier, vol. 64(C), pages 170-176.
    4. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    5. Yue-Jun Zhang, 2016. "Research on carbon emission trading mechanisms: current status and future possibilities," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(1/2), pages 89-107.
    6. Jaeseok Lee & Jongmin Yu, 2019. "Heterogenous Energy Consumption Behavior by Firm Size: Evidence from Korean Environmental Regulations," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    7. Vlad-Cosmin Bulai & Alexandra Horobet & Oana Cristina Popovici & Lucian Belascu & Sofia Adriana Dumitrescu, 2021. "A VaR-Based Methodology for Assessing Carbon Price Risk across European Union Economic Sectors," Energies, MDPI, vol. 14(24), pages 1-21, December.
    8. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    9. de Perthuis, Christian & Trotignon, Raphael, 2014. "Governance of CO2 markets: Lessons from the EU ETS," Energy Policy, Elsevier, vol. 75(C), pages 100-106.
    10. Jiongwen Chen & Jinsuo Zhang, 2022. "Effect Mechanism Research of Carbon Price Drivers in China—A Case Study of Shenzhen," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    11. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    12. Maria Mansanet-Bataller & Julien Chevallier & Morgan Hervé-Mignucci & Emilie Alberola, 2010. "The EUA-sCER Spread: Compliance Strategies and Arbitrage in the European Carbon Market," Post-Print halshs-00458991, HAL.
    13. Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2013. "Futures price volatility in commodities markets: The role of short term vs long term speculation," DEM Working Papers Series 042, University of Pavia, Department of Economics and Management.
    14. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    15. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    16. Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2012. "Returns in commodities futures markets and financial speculation: a multivariate GARCH approach," Quaderni di Dipartimento 170, University of Pavia, Department of Economics and Quantitative Methods.
    17. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    18. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 greenhouse gas mitigation modeling with marginal abatement cost curv es: technical change, emission scenarios and policy costs," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 91-124.
    19. Samuel Carrara & Giacomo Marangoni, 2013. "Non-CO2 Greenhouse Gas Mitigation Modeling with Marginal Abatement Cost Curves: Technical Change, Emission Scenarios and Policy Costs," Working Papers 2013.110, Fondazione Eni Enrico Mattei.
    20. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1974-:d:120722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.