IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3294-d347077.html
   My bibliography  Save this article

Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis

Author

Listed:
  • Wu Xie

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Research Center of Industrial Transfer and Innovation Development, Hefei University of Technology, Hefei 230009, China)

  • Shuai Hu

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Research Center of Industrial Transfer and Innovation Development, Hefei University of Technology, Hefei 230009, China)

  • Fangyi Li

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Research Center of Industrial Transfer and Innovation Development, Hefei University of Technology, Hefei 230009, China)

  • Xin Cao

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Research Center of Industrial Transfer and Innovation Development, Hefei University of Technology, Hefei 230009, China)

  • Zhipeng Tang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Tibet in China has extremely a fragile natural ecosystem, which is under a great pressure from global changes. The carbon footprint (CF) and water footprint (WF), reflecting the pressures of regional development on the natural environment, represent a lacuna in the field of study in Tibet due to missing data. In this paper, the 2012 multi-regional input–output table of China was employed to quantify the CF and WF of Tibet and the relationship between Tibet and other provinces of China. Spatial pattern and key sectors were also studied to demonstrate the current characters and the future trend of footprints. Tibet’s carbon emission was 4.0 Mt, 32.7% of CF, indicating that Tibet was a net importing region of carbon emission. Tibet received embodied carbon emission by trade from other regions, especially from Hebei, Inner Mongolia and Henan provinces, but played a complex role in virtual water allocation by transferring to most provinces and receiving from some provinces. The CF of Tibet will increase under different scenarios of 2030, but the WF can be restricted to 2.5 Gt in the slow scenario. In the future, imports of virtual resources will benefit the fragile ecosystem of Tibet and moreover, it is vital to restrict the local resource-intensive sectors and improve resource-use efficiency.

Suggested Citation

  • Wu Xie & Shuai Hu & Fangyi Li & Xin Cao & Zhipeng Tang, 2020. "Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3294-:d:347077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    2. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    3. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    4. White, David J. & Feng, Kuishuang & Sun, Laixiang & Hubacek, Klaus, 2015. "A hydro-economic MRIO analysis of the Haihe River Basin's water footprint and water stress," Ecological Modelling, Elsevier, vol. 318(C), pages 157-167.
    5. Liddle, Brantley, 2018. "Consumption-based accounting and the trade-carbon emissions nexus," Energy Economics, Elsevier, vol. 69(C), pages 71-78.
    6. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2017. "Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011," Applied Energy, Elsevier, vol. 189(C), pages 780-788.
    7. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    8. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    9. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    10. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    11. Lin, Jianyi & Liu, Yuan & Meng, Fanxin & Cui, Shenghui & Xu, Lilai, 2013. "Using hybrid method to evaluate carbon footprint of Xiamen City, China," Energy Policy, Elsevier, vol. 58(C), pages 220-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanqi Ding & Zhiyuan Wang & Chunhua Huang & Luyun Liu & Komi Bernard Bedra, 2023. "Carbon Pressure and Economic Growth in the Urban Agglomeration in the Middle Reaches of the Yangtze River: A Study on Decoupling Effect and Driving Factors," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    2. Muhandiramge Nimashi Navodana Rodrigo & Srinath Perera & Sepani Senaratne & Xiaohua Jin, 2021. "Review of Supply Chain Based Embodied Carbon Estimating Method: A Case Study Based Analysis," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    3. Xinsheng Zhou & Qinyang Guo & Yuanyuan Wang & Guofeng Wang, 2022. "Trade and Embodied CO 2 Emissions: Analysis from a Global Input–Output Perspective," IJERPH, MDPI, vol. 19(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    2. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    3. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Oluwafisayo Alabi & Max Mundy & Kim Swales & Karen Turner, 2016. "Physical water use and water sector activity in environmental input-output analysis," Working Papers 1612, University of Strathclyde Business School, Department of Economics.
    5. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    6. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    7. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    8. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    9. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    10. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    11. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    12. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    13. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    14. Zhang, Yang & Hu, Shan & Yan, Da & Jiang, Yi, 2023. "Proposing a carbon emission responsibility allocation method with benchmark approach," Ecological Economics, Elsevier, vol. 213(C).
    15. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    16. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    17. Meng, Fanxin & Liu, Gengyuan & Hu, Yuanchao & Su, Meirong & Yang, Zhifeng, 2018. "Urban carbon flow and structure analysis in a multi-scales economy," Energy Policy, Elsevier, vol. 121(C), pages 553-564.
    18. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    19. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    20. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3294-:d:347077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.