IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i12p8011-8021.html
   My bibliography  Save this article

Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions

Author

Listed:
  • Ferguson, Thomas M.
  • MacLean, Heather L.

Abstract

We compare energy use and greenhouse gas (GHG) emissions associated with total household expenditures and activities in Canada and US in 1997, the first detailed estimate of environmental burdens for Canadian households. We estimate direct burdens from published government data and indirect burdens using an industry-by-commodity, bi-national economic input–output life cycle assessment model developed in this study. Comparing 30 expenditure and two activity categories, per capita US household expenditures were 70% higher, while per capita household energy use and GHG emissions were only 10% and 44% higher, respectively. Energy use/dollar of expenditure was higher in most Canadian categories, while the average ratio of GHG emissions/energy use was higher in the US (65 vs 50kg Eq. CO2/GJ) due largely to a higher proportion of electricity from nonrenewable sources. Indirect environmental burdens represented 63–69% of total burdens and 62–70% of total burdens were associated with household operation and transportation. Key drivers of differences between energy profiles were: higher per capita electricity use by Canadian households, and higher US household private health care expenditures and motor fuel use. Energy-intensive production for export represented a higher proportion of Canadian production, resulting in less agreement between consumption and production-based analyses for Canada than US.

Suggested Citation

  • Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:8011-8021
    DOI: 10.1016/j.enpol.2011.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511007452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip Sinclair & Eleni Papathanasopoulou & Warren Mellor & Tim Jackson, 2005. "Towards an Integrated Regional Materials Flow Accounting Model," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 69-84, January.
    2. Reinders, A. H. M. E. & Vringer, K. & Blok, K., 2003. "The direct and indirect energy requirement of households in the European Union," Energy Policy, Elsevier, vol. 31(2), pages 139-153, January.
    3. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    4. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    5. Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.
    6. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    7. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    8. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    9. Faye Duchin, 2005. "Sustainable Consumption of Food: A Framework for Analyzing Scenarios about Changes in Diets," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 99-114, January.
    10. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    11. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    12. Herendeen, Robert A. & Ford, Charlotte & Hannon, Bruce, 1981. "Energy cost of living, 1972–1973," Energy, Elsevier, vol. 6(12), pages 1433-1450.
    13. Jesper Munksgaard & Mette Wier & Manfred Lenzen & Christopher Dey, 2005. "Using Input‐Output Analysis to Measure the Environmental Pressure of Consumption at Different Spatial Levels," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 169-185, January.
    14. Alfredsson, E.C., 2004. "“Green” consumption—no solution for climate change," Energy, Elsevier, vol. 29(4), pages 513-524.
    15. Glen P. Peters & Edgar G. Hertwich, 2006. "The Importance of Imports for Household Environmental Impacts," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 89-109, July.
    16. Herendeen, Robert & Tanaka, Jerry, 1976. "Energy cost of living," Energy, Elsevier, vol. 1(2), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    2. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    2. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    3. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    4. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    5. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    6. Shammin, Md. R. & Herendeen, Robert A. & Hanson, Michelle J. & Wilson, Eric J.H., 2010. "A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003," Ecological Economics, Elsevier, vol. 69(12), pages 2363-2373, October.
    7. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    8. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    9. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    10. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    11. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    12. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    13. Lan-Cui Liu & Gang Wu & Jin-Nan Wang & Yi-Ming Wei, 2010. "China's carbon emissions from urban and rural households during 1992-2007," CEEP-BIT Working Papers 12, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    14. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    15. Edeltraud Haselsteiner & Barbara Smetschka & Alexander Remesch & Veronika Gaube, 2015. "Time-Use Patterns and Sustainable Urban Form: A Case Study to Explore Potential Links," Sustainability, MDPI, vol. 7(6), pages 1-29, June.
    16. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    17. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    18. Emilio Zagheni, 2011. "The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 371-399, February.
    19. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    20. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:12:p:8011-8021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.