IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i12p2363-2373.html
   My bibliography  Save this article

A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003

Author

Listed:
  • Shammin, Md. R.
  • Herendeen, Robert A.
  • Hanson, Michelle J.
  • Wilson, Eric J.H.

Abstract

We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement is calculated as a function of individual energy intensities of goods and services derived from economic input-output analysis and expenditures for those goods and services. We use multivariate regression analysis to estimate patterns in household energy intensities. We define sprawl in terms of location in rural areas or in areas with low population size. We find that even though sprawl-related factors account for about 83% of the average household energy consumption, sprawl is only 17-19% more energy intensive than compact living based on how people actually lived. We observe that some of the advantages of reduced direct energy use by people living in high density urban centers are offset by their consumption of other non-energy products. A more detailed analysis reveals that lifestyle choices (household type, number of vehicles, and family size) that could be independent of location play a significant role in determining household energy intensity. We develop two models that offer opportunities for further analysis.

Suggested Citation

  • Shammin, Md. R. & Herendeen, Robert A. & Hanson, Michelle J. & Wilson, Eric J.H., 2010. "A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003," Ecological Economics, Elsevier, vol. 69(12), pages 2363-2373, October.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:12:p:2363-2373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(10)00269-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    2. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    3. Herendeen, Robert, 1978. "Total energy cost of household consumption in Norway, 1973," Energy, Elsevier, vol. 3(5), pages 615-630.
    4. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    5. Henri C. Moll & Klaas Jan Noorman & Rixt Kok & Rebecka Engström & Harald Throne‐Holst & Charlotte Clark, 2005. "Pursuing More Sustainable Consumption by Analyzing Household Metabolism in European Countries and Cities," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 259-275, January.
    6. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    7. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    8. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    9. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    10. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    11. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    12. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    13. Annika Carlsson‐Kanyama & Rebecka Engström & Rixt Kok, 2005. "Indirect and Direct Energy Requirements of City Households in Sweden: Options for Reduction, Lessons from Modeling," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 221-235, January.
    14. Herendeen, Robert & Tanaka, Jerry, 1976. "Energy cost of living," Energy, Elsevier, vol. 1(2), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    2. Selima Sultana & Nastaran Pourebrahim & Hyojin Kim, 2018. "Household Energy Expenditures in North Carolina: A Geographically Weighted Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    3. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    4. Cudjoe, Dan & Zhu, Bangzhu & Wang, Hong, 2024. "The role of incentive policies and personal innovativeness in consumers' carbon footprint tracking apps adoption in China," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    5. Balta-Ozkan, Nazmiye & Le Gallo, Julie, 2018. "Spatial variation in energy attitudes and perceptions: Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2160-2180.
    6. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    7. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    8. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    9. Anderson, John E. & Wulfhorst, Gebhard & Lang, Werner, 2015. "Energy analysis of the built environment—A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 149-158.
    10. Nässén, Jonas, 2014. "Determinants of greenhouse gas emissions from Swedish private consumption: Time-series and cross-sectional analyses," Energy, Elsevier, vol. 66(C), pages 98-106.
    11. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    12. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    13. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    14. Alonso-Epelde, E. & García-Muros, X. & González-Eguino, M., 2023. "Transport poverty indicators: A new framework based on the household budget survey," Energy Policy, Elsevier, vol. 181(C).
    15. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    16. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    17. Ethan Sharygin, 2013. "The Carbon Cost of an Educated Future: A Consumer Lifestyle Approach," VID Working Papers 1304, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    18. Houshmand E. MASOUMI, 2014. "Urban Sprawl In Mid-Sized Cities Of Mena, Evidence From Yazd And Kashan In Central Iran," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 6(2), pages 25-41, June.
    19. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    20. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    21. Gil, Gemma Oliver & Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Hu, Yukun & Varga, Liz & Hart, Phil, 2021. "Optimising renewable energy integration in new housing developments with low carbon technologies," Renewable Energy, Elsevier, vol. 169(C), pages 527-540.
    22. Baynes, Timothy & Lenzen, Manfred & Steinberger, Julia K. & Bai, Xuemei, 2011. "Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy," Energy Policy, Elsevier, vol. 39(11), pages 7298-7309.
    23. Jonas Nässén & Jörgen Larsson, 2015. "Would shorter working time reduce greenhouse gas emissions? An analysis of time use and consumption in Swedish households," Environment and Planning C, , vol. 33(4), pages 726-745, August.
    24. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    25. Yves Bettignies & Joao Meirelles & Gabriela Fernandez & Franziska Meinherz & Paul Hoekman & Philippe Bouillard & Aristide Athanassiadis, 2019. "The Scale-Dependent Behaviour of Cities: A Cross-Cities Multiscale Driver Analysis of Urban Energy Use," Sustainability, MDPI, vol. 11(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    2. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    3. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    4. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    5. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    6. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    7. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    8. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    9. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    10. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    11. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    12. Benders, Rene M.J. & Kok, Rixt & Moll, Henri C. & Wiersma, Gerwin & Noorman, Klaas Jan, 2006. "New approaches for household energy conservation--In search of personal household energy budgets and energy reduction options," Energy Policy, Elsevier, vol. 34(18), pages 3612-3622, December.
    13. Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
    14. Girod, Bastien & de Haan, Peter, 2009. "GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey," Energy Policy, Elsevier, vol. 37(12), pages 5650-5661, December.
    15. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2012. "Social groups and CO2 emissions in Spanish households," Energy Policy, Elsevier, vol. 44(C), pages 441-450.
    16. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    17. Ethan Sharygin, 2013. "The Carbon Cost of an Educated Future: A Consumer Lifestyle Approach," VID Working Papers 1304, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    18. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    19. Buechs, Milena & Schnepf, Sylke V., 2013. "UK Households' Carbon Footprint: A Comparison of the Association between Household Characteristics and Emissions from Home Energy, Transport and Other Goods and Services," IZA Discussion Papers 7204, Institute of Labor Economics (IZA).
    20. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:12:p:2363-2373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.