IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2733-d1663753.html
   My bibliography  Save this article

Evaluating the Opportunities and Challenges of Domestic PV Installation in Saudi Arabia Based on Field Deployment in Jeddah

Author

Listed:
  • Abdulsalam Alghamdi

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Luke S. Blunden

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • Majbaul Alam

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • AbuBakr S. Bahaj

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • Patrick A. B. James

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

Abstract

Despite the abundance of solar resources and significant electrical demand during the daytime, residential PV installations are rarely found in Saudi Arabia due to unfavorable economics, resulting from low electricity tariffs by global standards. This work reports on opportunities and challenges of residential PV installation in Saudi Arabia based on the deployment process and analyses of the performance of two 15 kWp PV systems installed on the rooftops of two similar villas in Jeddah, Saudi Arabia. For each villa, 18 months of electrical consumption and ambient temperature were available pre-installation, followed by 24 months of post-installation PV system monitoring, including incident radiation, generation, and import from the grid. A linear model of the consumption of the villas fitted between 0.016 and 0.019 kWh/m 2 per cooling degree day, with varying levels of interception. No significant change was observed post-installation of the PV system. On average, the reduction in overall electrical import from the grid was 20–30%. A financial analysis based on the real costs and performance of the installed systems found that the net billing feed-in tariff should be increased to SAR 1.0–1.5 (USD 0.27–0.40), depending on a range of other possible measures, in order to stimulate the growth in residential rooftop PVs.

Suggested Citation

  • Abdulsalam Alghamdi & Luke S. Blunden & Majbaul Alam & AbuBakr S. Bahaj & Patrick A. B. James, 2025. "Evaluating the Opportunities and Challenges of Domestic PV Installation in Saudi Arabia Based on Field Deployment in Jeddah," Energies, MDPI, vol. 18(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2733-:d:1663753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruderer Enzler, Heidi & Diekmann, Andreas & Meyer, Reto, 2014. "Subjective discount rates in the general population and their predictive power for energy saving behavior," Energy Policy, Elsevier, vol. 65(C), pages 524-540.
    2. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    3. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    4. Salaheddine Soummane & Frederic Ghersi, 2021. "Projecting Saudi Sectoral Electricity Demand in 2030 Using a Computable General Equilibrium Model," Discussion Papers ks--2021-dp012, King Abdullah Petroleum Studies and Research Center.
    5. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    6. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.
    7. Abeer Alshehri & Patrick James & AbuBakr Bahaj, 2024. "Pathways to the Large-Scale Adoption of Residential Photovoltaics in Saudi Arabia," Energies, MDPI, vol. 17(13), pages 1-19, June.
    8. Abdulsalam S. Alghamdi, 2019. "Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah," Energies, MDPI, vol. 12(23), pages 1-29, November.
    9. Jubran Alshahrani & Peter Boait, 2018. "Reducing High Energy Demand Associated with Air-Conditioning Needs in Saudi Arabia," Energies, MDPI, vol. 12(1), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Imdadul Haque & Mohammad Rumzi Tausif, 2024. "Examining the Energy-Growth Dynamics in Saudi Arabia: Insights and Policy Implications," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 697-706, November.
    2. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    3. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    6. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    7. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    8. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    9. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    10. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    11. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    12. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    13. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    14. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    15. Arthur E. Attema & Han Bleichrodt & Olivier L’Haridon & Patrick Peretti-Watel & Valérie Seror, 2018. "Discounting health and money: New evidence using a more robust method," Journal of Risk and Uncertainty, Springer, vol. 56(2), pages 117-140, April.
    16. Olsthoorn, Mark & Schleich, Joachim & Faure, Corinne, 2019. "Exploring the diffusion of low-energy houses: An empirical study in the European Union," Energy Policy, Elsevier, vol. 129(C), pages 1382-1393.
    17. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    18. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    19. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    20. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2733-:d:1663753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.