IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2733-d1663753.html
   My bibliography  Save this article

Evaluating the Opportunities and Challenges of Domestic PV Installation in Saudi Arabia Based on Field Deployment in Jeddah

Author

Listed:
  • Abdulsalam Alghamdi

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Luke S. Blunden

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • Majbaul Alam

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • AbuBakr S. Bahaj

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

  • Patrick A. B. James

    (Energy and Climate Change Division, University of Southampton, Southampton SO16 7QF, UK)

Abstract

Despite the abundance of solar resources and significant electrical demand during the daytime, residential PV installations are rarely found in Saudi Arabia due to unfavorable economics, resulting from low electricity tariffs by global standards. This work reports on opportunities and challenges of residential PV installation in Saudi Arabia based on the deployment process and analyses of the performance of two 15 kWp PV systems installed on the rooftops of two similar villas in Jeddah, Saudi Arabia. For each villa, 18 months of electrical consumption and ambient temperature were available pre-installation, followed by 24 months of post-installation PV system monitoring, including incident radiation, generation, and import from the grid. A linear model of the consumption of the villas fitted between 0.016 and 0.019 kWh/m 2 per cooling degree day, with varying levels of interception. No significant change was observed post-installation of the PV system. On average, the reduction in overall electrical import from the grid was 20–30%. A financial analysis based on the real costs and performance of the installed systems found that the net billing feed-in tariff should be increased to SAR 1.0–1.5 (USD 0.27–0.40), depending on a range of other possible measures, in order to stimulate the growth in residential rooftop PVs.

Suggested Citation

  • Abdulsalam Alghamdi & Luke S. Blunden & Majbaul Alam & AbuBakr S. Bahaj & Patrick A. B. James, 2025. "Evaluating the Opportunities and Challenges of Domestic PV Installation in Saudi Arabia Based on Field Deployment in Jeddah," Energies, MDPI, vol. 18(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2733-:d:1663753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pyrgou, Andri & Kylili, Angeliki & Fokaides, Paris A., 2016. "The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics," Energy Policy, Elsevier, vol. 95(C), pages 94-102.
    2. Abeer Alshehri & Patrick James & AbuBakr Bahaj, 2024. "Pathways to the Large-Scale Adoption of Residential Photovoltaics in Saudi Arabia," Energies, MDPI, vol. 17(13), pages 1-19, June.
    3. Bruderer Enzler, Heidi & Diekmann, Andreas & Meyer, Reto, 2014. "Subjective discount rates in the general population and their predictive power for energy saving behavior," Energy Policy, Elsevier, vol. 65(C), pages 524-540.
    4. Salaheddine Soummane & Frederic Ghersi, 2021. "Projecting Saudi Sectoral Electricity Demand in 2030 Using a Computable General Equilibrium Model," Discussion Papers ks--2021-dp012, King Abdullah Petroleum Studies and Research Center.
    5. Abdulsalam S. Alghamdi, 2019. "Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah," Energies, MDPI, vol. 12(23), pages 1-29, November.
    6. Jubran Alshahrani & Peter Boait, 2018. "Reducing High Energy Demand Associated with Air-Conditioning Needs in Saudi Arabia," Energies, MDPI, vol. 12(1), pages 1-29, December.
    7. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    8. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    9. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    10. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Imdadul Haque & Mohammad Rumzi Tausif, 2024. "Examining the Energy-Growth Dynamics in Saudi Arabia: Insights and Policy Implications," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 697-706, November.
    2. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    3. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    4. Kimmich, Christian & Fischbacher, Urs, 2016. "Behavioral determinants of supply chain integration and coexistence," Journal of Forest Economics, Elsevier, vol. 25(C), pages 55-77.
    5. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    6. Paul Koutstaal & Michiel Bijlsma & Gijsbert Zwart & X. van Tilburg, 2009. "Market performance and distributional effects on renewable energy markets," CPB Document 190.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    8. Rausser, Gordon & Chebotareva, Galina & Strielkowski, Wadim & Smutka, Luboš, 2025. "Would Russian solar energy projects be possible without state support?," Renewable Energy, Elsevier, vol. 241(C).
    9. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    10. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    11. Nasser Alghamdi & Patrick James & AbuBakr Bahaj, 2025. "Vision and Reality: An Assessment of Saudi Arabia’s In-Country Capacity to Deliver on Its Solar Ambitions," Sustainability, MDPI, vol. 17(13), pages 1-16, June.
    12. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    13. Kaller, Alexander & Bielen, Samantha & Marneffe, Wim, 2018. "The impact of regulatory quality and corruption on residential electricity prices in the context of electricity market reforms," Energy Policy, Elsevier, vol. 123(C), pages 514-524.
    14. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    15. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    16. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    17. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    18. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    19. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    20. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2733-:d:1663753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.