IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.15012.html
   My bibliography  Save this paper

Estimating the spatial economic and environmental impact of planned offshore wind energy in the USA using Environmentally Extended Multiregional Input-Output analysis

Author

Listed:
  • Apoorva Bademi
  • Miriam Stevens
  • Isha Sura
  • Shweta Singh

Abstract

There is a projected increase in offshore wind energy generation in the United States over the next three decades, driven by legislative commitments and government funding. Like other renewable technologies, the construction of offshore wind farms has environmental impacts and spillover effects that must be assessed. Developing offshore wind as a reliable domestic energy source requires a multiregional analysis of economic and environmental effects of constructing projects along lakefronts and coastal regions. Although no commercial offshore wind farms currently operate in the United States, seven states have announced capacity commitments exceeding 28 gigawatts by 2035. This study evaluates the spatial economic and environmental impacts of planned projects by linking the National Renewable Energy Laboratory Offshore Renewables Balance-of-system Installation Tool (ORBIT) with a multiregional input-output model of the U.S. economy developed in the Virtual Industrial Ecology Lab. ORBIT provides capital investment requirements for installation, which are combined with the model to estimate economic spillover effects. Environmental impacts are assessed using a newly developed multiregional greenhouse gas emissions dataset for the U.S. to capture supply chain emissions of offshore wind construction. The five projects analyzed require 16.3 billion dollars in capital investment and generate 27.6 billion dollars in direct and indirect economic impacts across the country. Emissions results show that states active in energy generation are most affected, but impacts can be reduced by decarbonizing the grid. A carbon payback analysis indicates the projects offset construction-phase emissions in less than a year. The framework highlights which states experience the greatest spillover effects in terms of emissions and economic activity required to support offshore wind expansion.

Suggested Citation

  • Apoorva Bademi & Miriam Stevens & Isha Sura & Shweta Singh, 2025. "Estimating the spatial economic and environmental impact of planned offshore wind energy in the USA using Environmentally Extended Multiregional Input-Output analysis," Papers 2508.15012, arXiv.org.
  • Handle: RePEc:arx:papers:2508.15012
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.15012
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    2. Wagner, Hermann-Josef & Baack, Christoph & Eickelkamp, Timo & Epe, Alexa & Lohmann, Jessica & Troy, Stefanie, 2011. "Life cycle assessment of the offshore wind farm alpha ventus," Energy, Elsevier, vol. 36(5), pages 2459-2464.
    3. Joel Bruneau & Madanmohan Ghosh & Deming Luo & Yunfa Zhu, 2023. "Income and investment, not energy policy, are driving GHG emission intensities," Economic Systems Research, Taylor & Francis Journals, vol. 35(3), pages 438-457, July.
    4. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    5. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Parsons, George & Firestone, Jeremy & Yan, Lingxiao & Toussaint, Jenna, 2020. "The effect of offshore wind power projects on recreational beach use on the east coast of the United States: Evidence from contingent-behavior data," Energy Policy, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    2. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Cao, Yijia & Wang, Xifan & Li, Yong & Tan, Yi & Xing, Jianbo & Fan, Ruixiang, 2016. "A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 766-778.
    4. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    5. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    6. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    7. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    8. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    9. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    10. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    11. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    12. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    13. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    14. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    15. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    16. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    17. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    18. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    19. Dong, Luran & Lang, Corey, 2022. "Do views of offshore wind energy detract? A hedonic price analysis of the Block Island wind farm in Rhode Island," Energy Policy, Elsevier, vol. 167(C).
    20. Göteman, Malin & Panteli, Mathaios & Rutgersson, Anna & Hayez, Léa & Virtanen, Mikko J. & Anvari, Mehrnaz & Johansson, Jonas, 2025. "Resilience of offshore renewable energy systems to extreme metocean conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.15012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.