IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v5y2016i1p1-1910.1186-s40008-015-0033-4.html
   My bibliography  Save this article

Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households

Author

Listed:
  • Yosuke Shigetomi
  • Keisuke Nansai
  • Shigemi Kagawa
  • Susumu Tohno

Abstract

This study simultaneously analyzed the carbon and material footprints for three critical metals (neodymium, cobalt, and platinum) in Japanese households with different income levels. These metals are critical for new energy technologies, such as electric vehicles and rechargeable batteries, and are thus central to carbon footprint reductions. The policy implications of the trade-offs between GHG mitigation and critical metal consumption are considered within the context of differences in income. A global link input–output model representing national and international supply chains was employed to quantify the footprints according to household income quintile. In addition, the square root scaling method was used to compare footprints among households, considering differences in household size and their footprint characteristics. It is found that the degree of similarity among the carbon and material footprints for the three target metals was not very high [Spearman’s rank correlation coefficients between them were 0.34 (neodymium), 0.63 (cobalt), and 0.10 (platinum)], implying that differences in relative household demand should be carefully considered based on differences in target footprints. The results of this study were compared to a similar study conducted in the UK to identify similarities and differences among footprints. In both countries, the carbon footprint intensity of household expenditure decreases as household income increases. The findings of this study also revealed that, in contrast to the case of carbon footprints, the material footprint intensities of household expenditure rise as household income increases, particularly in the case of neodymium. Consequently, the implementation of subsidies aimed at reducing carbon footprints and stimulating the economy should carefully consider the concomitant increase in material footprints. Importantly, such considerations are not only applicable to developed countries, but also emerging countries, the living standards of which are expected to increase markedly in the near future. Copyright Shigetomi et al. 2016

Suggested Citation

  • Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
  • Handle: RePEc:spr:jecstr:v:5:y:2016:i:1:p:1-19:10.1186/s40008-015-0033-4
    DOI: 10.1186/s40008-015-0033-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1186/s40008-015-0033-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1186/s40008-015-0033-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hashimzade, Nigar & Myles, Gareth & Black, John, 2017. "A Dictionary of Economics," OUP Catalogue, Oxford University Press, edition 5, number 9780198759430, Decembrie.
    2. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    3. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    4. Arnold Tukker & Arjan de Koning & Richard Wood & Troy Hawkins & Stephan Lutter & Jose Acosta & Jose M. Rueda Cantuche & Maaike Bouwmeester & Jan Oosterhaven & Thomas Drosdowski & Jeroen Kuenen, 2013. "Exiopol - Development And Illustrative Analyses Of A Detailed Global Mr Ee Sut/Iot," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 50-70, March.
    5. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    6. Keisuke Nansai & Shigemi Kagawa & Yasushi Kondo & Sangwon Suh & Rokuta Inaba & Kenichi Nakajima, 2009. "Improving The Completeness Of Product Carbon Footprints Using A Global Link Input-Output Model: The Case Of Japan," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 267-290.
    7. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    8. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    9. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    10. Arnold Tukker & Bart Jansen, 2006. "Environmental Impacts of Products: A Detailed Review of Studies," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 159-182, July.
    11. Richard Wood & Troy R. Hawkins & Edgar G. Hertwich & Arnold Tukker, 2014. "Harmonising National Input-Output Tables For Consumption-Based Accounting - Experiences From Exiopol," Economic Systems Research, Taylor & Francis Journals, vol. 26(4), pages 387-409, December.
    12. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    13. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    14. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    15. Moana S. Simas & Laura Golsteijn & Mark A. J. Huijbregts & Richard Wood & Edgar G. Hertwich, 2014. "The “Bad Labor” Footprint: Quantifying the Social Impacts of Globalization," Sustainability, MDPI, vol. 6(11), pages 1-27, October.
    16. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    17. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    18. Ion, MIHALCEA & Carmen-Eugenia, VERDES, 2013. "European Environmental Policy," Management Strategies Journal, Constantin Brancoveanu University, vol. 22(Special), pages 241-250.
    19. Ballet, Jérôme & Koffi, Jean-Marcel & Pelenc, Jérôme, 2013. "Environment, justice and the capability approach," Ecological Economics, Elsevier, vol. 85(C), pages 28-34.
    20. Chitnis, Mona & Druckman, Angela & Hunt, Lester C. & Jackson, Tim & Milne, Scott, 2012. "Forecasting scenarios for UK household expenditure and associated GHG emissions: Outlook to 2030," Ecological Economics, Elsevier, vol. 84(C), pages 129-141.
    21. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    22. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    23. Saunders, Harry, 2013. "Is what we think of as “rebound” really just income effects in disguise?," Energy Policy, Elsevier, vol. 57(C), pages 308-317.
    24. Kronenberg, Tobias, 2009. "The impact of demographic change on energy use and greenhouse gas emissions in Germany," Ecological Economics, Elsevier, vol. 68(10), pages 2637-2645, August.
    25. Druckman, Angela & Buck, Ian & Hayward, Bronwyn & Jackson, Tim, 2012. "Time, gender and carbon: A study of the carbon implications of British adults' use of time," Ecological Economics, Elsevier, vol. 84(C), pages 153-163.
    26. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    27. Erik Dietzenbacher & Bart Los & Robert Stehrer & Marcel Timmer & Gaaitzen de Vries, 2013. "The Construction Of World Input-Output Tables In The Wiod Project," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 71-98, March.
    28. Rosa Duarte & Sofiane Rebahi & Julio S�nchez-Ch�liz & Cristina Sarasa, 2014. "Households' Behaviour And Environmental Emissions In A Regional Economy," Economic Systems Research, Taylor & Francis Journals, vol. 26(4), pages 410-430, December.
    29. Edgar G. Hertwich, 2005. "Consumption and the Rebound Effect: An Industrial Ecology Perspective," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 85-98, January.
    30. Bastien Girod & Peter De Haan, 2010. "More or Better? A Model for Changes in Household Greenhouse Gas Emissions due to Higher Income," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 31-49, January.
    31. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    32. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    33. Edgar Hertwich, 2011. "The Life Cycle Environmental Impacts Of Consumption," Economic Systems Research, Taylor & Francis Journals, vol. 23(1), pages 27-47.
    34. Andrea Collins & Andrew Flynn & Thomas Wiedmann & John Barrett, 2006. "The Environmental Impacts of Consumption at a Subnational Level," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 9-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    2. Gilang Hardadi & Alexander Buchholz & Stefan Pauliuk, 2021. "Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 95-113, February.
    3. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Kondo, Yasushi & Tohno, Susumu, 2017. "Economic and social determinants of global physical flows of critical metals," Resources Policy, Elsevier, vol. 52(C), pages 107-113.
    4. Hajime Ohno & Kazuyo Matsubae & Kenichi Nakajima & Keisuke Nansai & Yasuhiro Fukushima & Tetsuya Nagasaka, 2016. "Consumption-based accounting of steel alloying elements and greenhouse gas emissions associated with the metal use: the case of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-17, December.
    5. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    2. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    3. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    4. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    5. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    6. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    7. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    8. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    9. Mair, Simon & Druckman, Angela & Jackson, Tim, 2019. "Higher Wages for Sustainable Development? Employment and Carbon Effects of Paying a Living Wage in Global Apparel Supply Chains," Ecological Economics, Elsevier, vol. 159(C), pages 11-23.
    10. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    11. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    12. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    13. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    14. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    15. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    16. Edeltraud Haselsteiner & Barbara Smetschka & Alexander Remesch & Veronika Gaube, 2015. "Time-Use Patterns and Sustainable Urban Form: A Case Study to Explore Potential Links," Sustainability, MDPI, vol. 7(6), pages 1-29, June.
    17. Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
    18. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    19. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    20. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:5:y:2016:i:1:p:1-19:10.1186/s40008-015-0033-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.