IDEAS home Printed from https://ideas.repec.org/e/c/pmu51.html
   My authors  Follow this author

Peter Mulder

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Jessie Bakens & Raymond Florax & Henri (H.L.F.) de Groot & Peter Mulder, 2018. "Living Apart Together: The Economic Value of Ethnic Diversity in Cities," Tinbergen Institute Discussion Papers 18-029/VIII, Tinbergen Institute.

    Cited by:

    1. David C. Maré & Jacques Poot, 2019. "Valuing cultural diversity of cities," Working Papers 19_05, Motu Economic and Public Policy Research.
    2. Bill Cochrane & Jacques Poot, 2019. "The Effects of Immigration on Local Housing Markets," Working Papers in Economics 19/07, University of Waikato.

  2. Jessie Bakens & Raymond Florax & Peter Mulder, 2016. "Ethnic Drift and White Flight: A Gravity Model of Neighborhood Formation," Tinbergen Institute Discussion Papers 16-062/VIII, Tinbergen Institute.

    Cited by:

    1. Carl Gaigné & Hans R A Koster & Fabien Moizeau & Jacques-François Thisse, 2022. "Who Lives Where in the City? Amenities, Commuting and Income Sorting," Post-Print halshs-03379541, HAL.
    2. Carl Gaigne & Hans R.A. Koster & Fabien Moizeau & Jacques-Francois Thisse, 2017. "Amenities and the Social Structure of Cities," HSE Working papers WP BRP 162/EC/2017, National Research University Higher School of Economics.
    3. Daniel Arribas-Bel & Jessie Bakens, 2018. "Spatial dynamics of cultural diversity in the Netherlands," Environment and Planning B, , vol. 45(6), pages 1142-1156, November.

  3. Mahumane, Gilberto & Mulder, Peter, 2015. "Mozambique Energy Outlook, 2015-2030. Data, scenarios and policy implications," MPRA Paper 65968, University Library of Munich, Germany.

    Cited by:

    1. Arsénio José Mindú & Jó António Capece & Rui Esteves Araújo & Armando C. Oliveira, 2021. "Feasibility of Utilizing Photovoltaics for Irrigation Purposes in Moamba, Mozambique," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    2. Olusola Joel Oyeleke & Taiwo Akinlo, 2020. "Energy generation and economic growth: empirical evidence from Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7177-7191, December.

  4. Mahumane, Gilberto & Mulder, Peter, 2015. "Introducing MOZLEAP: an integrated long-run scenario model of the emerging energy sector of Mozambique," MPRA Paper 65967, University Library of Munich, Germany.

    Cited by:

    1. Spalding-Fecher, Randall. & Senatla, Mamahloko & Yamba, Francis & Lukwesa, Biness & Himunzowa, Grayson & Heaps, Charles & Chapman, Arthur & Mahumane, Gilberto & Tembo, Bernard & Nyambe, Imasiku, 2017. "Electricity supply and demand scenarios for the Southern African power pool," Energy Policy, Elsevier, vol. 101(C), pages 403-414.
    2. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    3. Emília Inês Come Zebra & Gilberto Mahumane & Federico Antonio Canu & Ana Cardoso, 2021. "Assessing the Greenhouse Gas Impact of a Renewable Energy Feed-in Tariff Policy in Mozambique: Towards NDC Ambition and Recommendations to Effectively Measure, Report, and Verify Its Implementation," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    4. Perrotton, F. & Massol, O., 2018. "Rate-of-return regulation to unlock natural gas pipeline deployment: insights from a Mozambican project," Working Papers 18/05, Department of Economics, City University London.
    5. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    6. Mahumane, Gilberto & Mulder, Peter, 2015. "Mozambique Energy Outlook, 2015-2030. Data, scenarios and policy implications," MPRA Paper 65968, University Library of Munich, Germany.
    7. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Spalding-Fecher, Randall & Joyce, Brian & Winkler, Harald, 2017. "Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications," Energy Policy, Elsevier, vol. 103(C), pages 84-97.
    9. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    10. Mahumane, Gilberto & Mulder, Peter, 2019. "Expanding versus greening? Long-term energy and emission transitions in Mozambique," Energy Policy, Elsevier, vol. 126(C), pages 145-156.
    11. Mahumane, Gilberto & Mulder, Peter, 2022. "Urbanization of energy poverty? The case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

  5. Elizabeth Dobis & Michael Delgado & Raymond Florax & Peter Mulder, 2015. "Population Growth in American Cities between 1990 and 2010: True Contagion and Urban Hierarchy," ERSA conference papers ersa15p1128, European Regional Science Association.

    Cited by:

    1. Jousseaume Valérie & Talandier Magali, 2016. "The Dynamics Of Small Towns In France," European Countryside, Sciendo, vol. 8(4), pages 395-412, December.

  6. Henri De Groot & Peter Mulder & Marten Kamphorst, 2014. "The Urban Hierarchy Unraveled: A Meta-Analysis on the Rank-Size Rule," ERSA conference papers ersa14p1555, European Regional Science Association.

    Cited by:

    1. Zoričak, Martin & Horváth, Denis & Gazda, Vladimír & Hudec, Oto, 2021. "Spatial evolution of industries modelled by cellular automata," Journal of Business Research, Elsevier, vol. 129(C), pages 580-588.

  7. Pohl, Birte & Mulder, Peter, 2013. "Explaining the Diffusion of Renewable Energy Technology in Developing Countries," GIGA Working Papers 217, GIGA German Institute of Global and Area Studies.

    Cited by:

    1. Constantinos Vassiliades & Ogheneruona Endurance Diemuodeke & Eric Boachie Yiadom & Ravita D. Prasad & Wassim Dbouk, 2022. "Policy Pathways for Mapping Clean Energy Access for Cooking in the Global South—A Case for Rural Communities," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    2. Bordin, Chiara & Anuta, Harold Oghenetejiri & Crossland, Andrew & Gutierrez, Isabel Lascurain & Dent, Chris J. & Vigo, Daniele, 2017. "A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration," Renewable Energy, Elsevier, vol. 101(C), pages 417-430.
    3. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    4. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    5. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    6. Iyabo Adeola Olanrele & José Alberto Fuinhas, 2024. "Assessment of renewable electricity adoption in sub-Saharan Africa," Energy & Environment, , vol. 35(2), pages 848-873, March.
    7. Lin, Boqiang & Omoju, Oluwasola E., 2017. "Focusing on the right targets: Economic factors driving non-hydro renewable energy transition," Renewable Energy, Elsevier, vol. 113(C), pages 52-63.
    8. -, 2023. "Foreign Direct Investment in Latin America and the Caribbean 2023," La Inversión Extranjera Directa en América Latina y el Caribe, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 48979 edited by Eclac, September.
    9. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    10. Miria Pigato & Simon J. Black & Damien Dussaux & Zhimin Mao & Miles McKenna & Ryan Rafaty & Simon Touboul, 2020. "Technology Transfer and Innovation for Low-Carbon Development," World Bank Publications - Books, The World Bank Group, number 33474, December.
    11. Chen, Jie & Huang, Shoujun & Kamran, Hafiz Waqas, 2023. "Empowering sustainability practices through energy transition for sustainable development goal 7: The role of energy patents and natural resources among European Union economies through advanced panel," Energy Policy, Elsevier, vol. 176(C).
    12. Suman, A., 2021. "Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Jidapa Ungwanitban & Salah ud Din Taj, 2020. "Macroeconomic Determinants of Renewable Electricity Technology Adoption in Thailand," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 2(2), pages 99-111, June.
    14. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.
    15. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    16. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    17. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Zhao, Zhen-Yu & Chen, Yu-Long & Li, Heng, 2019. "What affects the development of renewable energy power generation projects in China: ISM analysis," Renewable Energy, Elsevier, vol. 131(C), pages 506-517.
    19. Tser-Yieth Chen & Chi-Jui Huang, 2019. "A Two-Tier Scenario Planning Model of Environmental Sustainability Policy in Taiwan," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    20. Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers id:11125, eSocialSciences.
    21. Tan, Yan & Uprasen, Utai, 2022. "The effect of foreign direct investment on renewable energy consumption subject to the moderating effect of environmental regulation: Evidence from the BRICS countries," Renewable Energy, Elsevier, vol. 201(P2), pages 135-149.
    22. Hussain Ali Bekhet & Nor Hamisham Harun, 2017. "Elasticity and Causality among Electricity Generation from Renewable Energy and Its Determinants in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 202-216.
    23. Murshed, Muntasir, 2020. "Are Trade Liberalization policies aligned with Renewable Energy Transition in low and middle income countries? An Instrumental Variable approach," Renewable Energy, Elsevier, vol. 151(C), pages 1110-1123.
    24. Yang, Chunmeng & Bu, Siqi & Fan, Yi & Wan, Wayne Xinwei & Wang, Ruoheng & Foley, Aoife, 2023. "Data-driven prediction and evaluation on future impact of energy transition policies in smart regions," Applied Energy, Elsevier, vol. 332(C).
    25. Yang, Suyeon & Park, Sangchan, 2020. "The effects of renewable energy financial incentive policy and democratic governance on renewable energy aid effectiveness," Energy Policy, Elsevier, vol. 145(C).
    26. Ankrah, Isaac & Lin, Boqiang, 2020. "Renewable energy development in Ghana: Beyond potentials and commitment," Energy, Elsevier, vol. 198(C).
    27. Best, Rohan, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Energy Economics, Elsevier, vol. 63(C), pages 75-83.
    28. Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
    29. Kim, Jeayoon & Park, Kwangwoo, 2018. "Effect of the Clean Development Mechanism on the deployment of renewable energy: Less developed vs. well-developed financial markets," Energy Economics, Elsevier, vol. 75(C), pages 1-13.
    30. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    31. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    32. Li, Raymond & Lee, Hazel, 2022. "The role of energy prices and economic growth in renewable energy capacity expansion – Evidence from OECD Europe," Renewable Energy, Elsevier, vol. 189(C), pages 435-443.
    33. Nadia Hanif & Noman Arshed & Osama Aziz, 2020. "On interaction of the energy: Human capital Kuznets curve? A case for technology innovation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7559-7586, December.
    34. Alfonso Carfora & Monica Ronghi & Giuseppe Scandurra, 2017. "The effect of Climate Finance on Greenhouse Gas Emission: A Quantile Regression Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 185-199.
    35. Rohan Best & Paul J. Burke, 2017. "The Importance of Government Effectiveness for Transitions toward Greater Electrification in Developing Countries," Energies, MDPI, vol. 10(9), pages 1-17, August.
    36. Zeinab Zanjani & Pedro Macedo & Isabel Soares, 2021. "Investigating Carbon Emissions from Electricity Generation and GDP Nexus Using Maximum Entropy Bootstrap: Evidence from Oil-Producing Countries in the Middle East," Energies, MDPI, vol. 14(12), pages 1-22, June.
    37. Horbach, Jens & Rammer, Christian, 2017. "Energy transition in Germany and regional spillovers: What triggers the diffusion of renewable energy in firms?," ZEW Discussion Papers 17-044, ZEW - Leibniz Centre for European Economic Research.
    38. Huang, Junbing & Luan, Bingjiang & He, Wanrui & Chen, Xiang & Li, Mengfan, 2022. "Energy technology of conservation versus substitution and energy intensity in China," Energy, Elsevier, vol. 244(PA).
    39. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    40. Shahzad, Umer & Schneider, Nicolas & Ben Jebli, Mehdi, 2021. "How coal and geothermal energies interact with industrial development and carbon emissions? An autoregressive distributed lags approach to the Philippines," Resources Policy, Elsevier, vol. 74(C).
    41. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    42. Kahouli, Bassem, 2018. "The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs)," Energy, Elsevier, vol. 145(C), pages 388-399.
    43. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    44. Elena Shadrina, 2020. "Non-Hydropower Renewable Energy in Central Asia: Assessment of Deployment Status and Analysis of Underlying Factors," Energies, MDPI, vol. 13(11), pages 1-29, June.
    45. Halleck-Vega, Solmaria & Mandel, Antoine & Millock, Katrin, 2018. "Accelerating diffusion of climate-friendly technologies: A network perspective," Ecological Economics, Elsevier, vol. 152(C), pages 235-245.
    46. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    47. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    48. Carmen Elena Stoenoiu, 2022. "Sustainable Development—A Path to a Better Future," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    49. Andal, Emmanuel Genesis T., 2022. "Industrialisation, state-related institutions, and the speed of energy substitution: The case in Europe," Energy, Elsevier, vol. 239(PC).
    50. Jianwen Zhang & Jacob Cherian & Ashak Mahmud Parvez & Sarminah Samad & Muhammad Safdar Sial & Mohammad Athar Ali & Mohammed Arshad Khan, 2022. "Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    51. Pohl, Birte & Mulder, Peter, 2013. "Explaining the Diffusion of Renewable Energy Technology in Developing Countries," GIGA Working Papers 217, GIGA German Institute of Global and Area Studies.
    52. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    53. Lee, Chien-Chiang & Wang, Chih-Wei & Ho, Shan-Ju, 2022. "Financial aid and financial inclusion: Does risk uncertainty matter?," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
    54. Miguel Cárdenas Rodríguez & Ivan Haščič & Nick Johnstone & Jérôme Silva & Antoine Ferey, 2015. "Renewable Energy Policies and Private Sector Investment: Evidence from Financial Microdata," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 163-188, September.
    55. Abban, Abdul Rashid & Hasan, Mohammad Zahid, 2021. "Revisiting the determinants of renewable energy investment - New evidence from political and government ideology," Energy Policy, Elsevier, vol. 151(C).
    56. Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
    57. Apergis, Nicholas & Pinar, Mehmet, 2021. "The role of party polarization in renewable energy consumption: Fresh evidence across the EU countries," Energy Policy, Elsevier, vol. 157(C).
    58. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    59. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    60. Yunpeng Sun & Ruoya Jia & Asif Razzaq & Qun Bao, 2023. "Drivers of China’s geographical renewable energy development: evidence from spatial association network structure approaches," Economic Change and Restructuring, Springer, vol. 56(6), pages 4115-4163, December.
    61. van Vuuren, Dirk Johan & Marnewick, Annlizé & Pretorius, Jan Harm C., 2019. "A proposed simulation-based theoretical preconstruction process: The case of solar photovoltaic technology in South African shopping centres," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    62. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    63. German Bersalli & Philippe Menanteau & Jonathan El Methni, 2020. "Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America," Post-Print hal-02955530, HAL.
    64. Muhammad Jamil & Farhan Ahmed & Gouranga Chandra Debnath & Štefan Bojnec, 2022. "Transition to Renewable Energy Production in the United States: The Role of Monetary, Fiscal, and Trade Policy Uncertainty," Energies, MDPI, vol. 15(13), pages 1-15, June.
    65. Wu, Shu & Han, Hongyun, 2022. "Energy transition, intensity growth, and policy evolution: Evidence from rural China," Energy Economics, Elsevier, vol. 105(C).
    66. Khraief, Naceur & Shahbaz, Muhammad & Mallick, Hrushikesh & Loganathan, Nanthakumar, 2016. "Estimation of Electricity Demand Function for Algeria: Revisit of Time Series Analysis," MPRA Paper 74870, University Library of Munich, Germany, revised 01 Nov 2016.
    67. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    68. Yang, Lisha & Ni, Mengying, 2022. "Is financial development beneficial to improve the efficiency of green development? Evidence from the “Belt and Road” countries," Energy Economics, Elsevier, vol. 105(C).
    69. Lokonon Boris Odilon Kounagbè & Adeleke Oluwole Salami, 2017. "Working Paper 269 - Climate Change and Renewable Energy Generation in Africa," Working Paper Series 2386, African Development Bank.
    70. Jové Llopis, Elisenda, & Segarra Blasco, Agustí, 1958-, 2018. "Determinants of energy efficiency and renewable energy in European SMEs," Working Papers 2072/306520, Universitat Rovira i Virgili, Department of Economics.
    71. Mar'ia Jos'e Presno & Manuel Landajo, 2024. "EU-28's progress towards the 2020 renewable energy share. A club convergence analysis," Papers 2402.00788, arXiv.org.
    72. Kahia, Montassar & Ben Aissa, Mohamed Safouane & kadria, Mohamed, 2014. "Do renewable energy policies promote economic growth? A nonparametric approach," MPRA Paper 80751, University Library of Munich, Germany.
    73. Edmond Baranes & Julien Jacqmin & Jean-Christophe Poudou, 2017. "Non-renewable and intermittent renewable energy sources: Friends and foes?," Post-Print hal-01671723, HAL.
    74. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    75. Zhang, Gupeng & Duan, Hongbo & Wang, Shouyang & Zhang, Qianlong, 2018. "Comparative technological advantages between China and developed areas in respect of energy production: Quantitative and qualitative measurements based on patents," Energy, Elsevier, vol. 162(C), pages 1223-1233.
    76. Rohan Best & Paul J. Burke, 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," CCEP Working Papers 1803, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    77. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    78. Ndlovu, Vanessa & Inglesi-Lotz, Roula, 2020. "The causal relationship between energy and economic growth through research and development (R&D): The case of BRICS and lessons for South Africa," Energy, Elsevier, vol. 199(C).
    79. Wang, Ying & Zhang, Dayong & Ji, Qiang & Shi, Xunpeng, 2020. "Regional renewable energy development in China: A multidimensional assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    80. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    81. Yan, Zheming & Zou, Baoling & Du, Kerui & Li, Ke, 2020. "Do renewable energy technology innovations promote China's green productivity growth? Fresh evidence from partially linear functional-coefficient models," Energy Economics, Elsevier, vol. 90(C).
    82. Huang, Junbing & Wang, Yajun & Guo, Lili, 2022. "Energy intensity and energy-specific technological progress: A case study in Guangdong province of China," Renewable Energy, Elsevier, vol. 184(C), pages 990-1001.
    83. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    84. Somoye, Oluwatoyin Abidemi & Ozdeser, Huseyin & Seraj, Mehdi, 2022. "Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach," Renewable Energy, Elsevier, vol. 190(C), pages 606-616.
    85. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    86. Moises Neil V Seriño, 2022. "Energy security through diversification of non-hydro renewable energy sources in developing countries," Energy & Environment, , vol. 33(3), pages 546-561, May.
    87. S.S. Alharbi & M. Al Mamun & Sabri Boubaker & S.K.A. Rizvi, 2023. "Green Finance and Renewable Energy: A Worldwide Evidence," Post-Print hal-04434113, HAL.
    88. Davood Askarany & Hassan Yazdifar & Kevin Dow, 2021. "B2B Networking, Renewable Energy, and Sustainability," JRFM, MDPI, vol. 14(7), pages 1-13, June.
    89. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).
    90. Lan Khanh Chu, 2023. "Environmentally related technologies and environmental regulations in promoting renewable energy: evidence from OECD countries," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 177-197, March.
    91. Nora Yusma Mohamed Yusoff & Abdul Rahim Ridzuan & Thomas Soseco & Wahjoedi & Bagus Shandy Narmaditya & Lim Chee Ann, 2023. "Comprehensive Outlook on Macroeconomic Determinants for Renewable Energy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    92. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    93. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2023. "The effects of financial institutions on the green energy transition: A cross-sectional panel study," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 524-542.
    94. Fadly, Dalia, 2019. "Low-carbon transition: Private sector investment in renewable energy projects in developing countries," World Development, Elsevier, vol. 122(C), pages 552-569.
    95. Hille, Erik, 2023. "Europe's energy crisis: Are geopolitical risks in source countries of fossil fuels accelerating the transition to renewable energy?," Energy Economics, Elsevier, vol. 127(PA).
    96. Amankwah-Amoah, Joseph & Egbetokun, Abiodun & Osabutey, Ellis L.C., 2018. "Meeting the 21st century challenges of doing business in Africa," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 336-338.
    97. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).
    98. Shahriyar Mukhtarov & Sugra Humbatova & Natig Gadim-Oglu Hajiyev & Sannur Aliyev, 2020. "The Financial Development-Renewable Energy Consumption Nexus in the Case of Azerbaijan," Energies, MDPI, vol. 13(23), pages 1-14, November.
    99. Bellakhal, Rihab & Ben Kheder, Sonia & Haffoudhi, Houda, 2019. "Governance and renewable energy investment in MENA countries:How does trade matter?," Energy Economics, Elsevier, vol. 84(C).
    100. Farah Roslan & Ștefan Cristian Gherghina & Jumadil Saputra & Mário Nuno Mata & Farah Diana Mohmad Zali & José Moleiro Martins, 2022. "A Panel Data Approach towards the Effectiveness of Energy Policies in Fostering the Implementation of Solar Photovoltaic Technology: Empirical Evidence for Asia-Pacific," Energies, MDPI, vol. 15(10), pages 1-22, May.
    101. Aleksandar Stanimirović & Miloš Bogdanović & Milena Frtunić & Leonid Stoimenov, 2020. "Low-voltage electricity network monitoring system: Design and production experience," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477209, January.
    102. Renato Passaro & Ivana Quinto & Giuseppe Scandurra & Antonio Thomas, 2020. "How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.
    103. Shahsavari, Amir & Akbari, Morteza, 2018. "Potential of solar energy in developing countries for reducing energy-related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 275-291.
    104. Kim, Jeayoon & Park, Kwangwoo, 2016. "Financial development and deployment of renewable energy technologies," Energy Economics, Elsevier, vol. 59(C), pages 238-250.

  8. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.

    Cited by:

    1. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    2. Ruzive, Tafadzwa & Mkhombo, Thando & Mhaka, Simba & Mavikela, Nomahlubi & Phiri, Andrew, 2017. "Electricity intensity and unemployment in South Africa: A quantile regression analysis," MPRA Paper 81717, University Library of Munich, Germany.
    3. Lukas Hardt & John Barrett & Peter G. Taylor & Timothy J. Foxon, 2020. "Structural Change for a Post-Growth Economy: Investigating the Relationship between Embodied Energy Intensity and Labour Productivity," Sustainability, MDPI, vol. 12(3), pages 1-25, January.
    4. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    5. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    6. Galindo, Luis Miguel & Beltrán, Allan & Ferrer, Jimy & Alatorre, José Eduardo, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    9. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    10. Herrmann-Pillath, Carsten, 2015. "Energy, growth, and evolution: Towards a naturalistic ontology of economics," Ecological Economics, Elsevier, vol. 119(C), pages 432-442.
    11. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    12. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    13. Eirini Stergiou & Nikos Rigas & Eftychia Zaroutieri & Konstantinos Kounetas, 2023. "Energy, renewable and technical efficiency convergence: a global evidence," Economic Change and Restructuring, Springer, vol. 56(3), pages 1601-1628, June.
    14. Peng, Jiachao & Xiao, Jianzhong & Zhang, Lian & Wang, Teng, 2020. "The impact of China's ‘Atmosphere Ten Articles’ policy on total factor productivity of energy exploitation: Empirical evidence using synthetic control methods," Resources Policy, Elsevier, vol. 65(C).
    15. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    16. Baniya, Bishal & Giurco, Damien & Kelly, Scott, 2021. "Green growth in Nepal and Bangladesh: Empirical analysis and future prospects," Energy Policy, Elsevier, vol. 149(C).
    17. Ifeacho Christopher I & Choga Ireen, 2023. "Analysis of the Nature and Determinants of Energy Price Dynamics in Sub-Saharan Africa (SSA)," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(2), pages 27-48, June.
    18. Duro, Juan Antonio, 2015. "The international distribution of energy intensities: Some synthetic results," Energy Policy, Elsevier, vol. 83(C), pages 257-266.
    19. Jules-Daniel Wurlod & Joëlle Noailly, 2016. "The impact of green innovation on energy intensity: an empirical analysis for 14 industrial sectors in OECD countries," CIES Research Paper series 42-2016, Centre for International Environmental Studies, The Graduate Institute.
    20. Peng Hou & Yilin Li & Yong Tan & Yuanjie Hou, 2020. "Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation," Energies, MDPI, vol. 13(16), pages 1-24, August.
    21. Bahman Huseynli, 2023. "Effect of Exports of Goods and Services and Energy Consumption in Italy`s Service Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 254-261, May.
    22. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    23. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    24. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    25. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    26. Robert J R Elliott & Puyang Sun & Tong Zhu, 2014. "Urbanization and Energy Intensity: A Province-level Study for China," Discussion Papers 14-05, Department of Economics, University of Birmingham.
    27. Yueju Wang & Xingpeng Chen & Zilong Zhang & Bing Xue & Chenyu Lu, 2019. "Cross-City Convergence in Urban Green Space Coverage in China," Sustainability, MDPI, vol. 11(17), pages 1-11, August.
    28. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    29. Kong, Dongmin & Yang, Xiandong & Xu, Jian, 2020. "Energy price and cost induced innovation: Evidence from China," Energy, Elsevier, vol. 192(C).
    30. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    31. Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
    32. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    33. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    34. Mukalayi, Nancy Muvumbu & Inglesi-Lotz, Roula, 2023. "Digital financial inclusion and energy and environment: Global positioning of Sub-Saharan African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    35. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    36. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    37. Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    38. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    39. Simone Marsiglio & Alberto Ansuategi & Maria Carmen Gallastegui, 2016. "The Environmental Kuznets Curve and the Structural Change Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 265-288, February.
    40. Adom, Philip Kofi, 2016. "The transition between energy efficient and energy inefficient states in Cameroon," Energy Economics, Elsevier, vol. 54(C), pages 248-262.
    41. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    42. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    43. Eleni-Plousia Kosteroglou & Georgios Theriou & Dimitrios Chatzoudes, 2016. "Customer satisfaction from private utility companies: An explanatory study," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 9(3), pages 13-23, December.
    44. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    45. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2022. "Institutional quality and its spatial spillover effects on energy efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    46. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    47. Tiago Sequeira & Marcelo Santos, 2018. "Education and Energy Intensity: Simple Economic Modelling and Preliminary Empirical Results," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    48. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    49. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    50. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    51. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    52. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
    53. Du, Xiuying & Xie, Zixiong, 2020. "Occurrence of turning point on environmental Kuznets curve in the process of (de)industrialization," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 359-369.
    54. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    55. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
    56. Proskuryakova, L. & Kovalev, A., 2015. "Measuring energy efficiency: Is energy intensity a good evidence base?," Applied Energy, Elsevier, vol. 138(C), pages 450-459.
    57. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.

  9. Jessie Bakens & Peter Mulder & Peter Nijkamp, 2012. "Economic Impacts of Cultural Diversity in the Netherlands: Productivity, Utility, and Sorting," Tinbergen Institute Discussion Papers 12-024/3, Tinbergen Institute.

    Cited by:

    1. Ina Blind & Matz Dahlberg, 2020. "Immigration, new religious symbols, and the dynamics of neighborhoods," Journal of Regional Science, Wiley Blackwell, vol. 60(5), pages 929-958, November.
    2. Abigail Cooke & Thomas Kemeny, 2016. "Urban Immigrant Diversity and Inclusive Institutions," Working Papers 16-07, Center for Economic Studies, U.S. Census Bureau.
    3. Martijn I Dröes & Hans R A Koster, 2023. "A world divided: refugee centers, house prices and household preferences," Journal of Economic Geography, Oxford University Press, vol. 23(1), pages 51-90.
    4. Thomas Kemeny, 2017. "Immigrant Diversity and Economic Performance in Cities," International Regional Science Review, , vol. 40(2), pages 164-208, March.
    5. Longhi, Simonetta, 2013. "Impact of cultural diversity on wages, evidence from panel data," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 797-807.
    6. Lee, Neil, 2013. "Cultural diversity, cities and innovation: firm effects or city effects?," LSE Research Online Documents on Economics 57874, London School of Economics and Political Science, LSE Library.
    7. Jessie Bakens & Raymond JGM Florax & Henri LF de Groot & Peter Mulder, 2022. "Living apart together: The economic value of ethnic diversity in cities," Environment and Planning B, , vol. 49(8), pages 2267-2282, October.
    8. Kristoffer Moeller, 2018. "Culturally clustered or in the cloud? How amenities drive firm location decision in Berlin," Journal of Regional Science, Wiley Blackwell, vol. 58(4), pages 728-758, September.
    9. Thomas Kemeny & Abigail Cooke, 2015. "Spillovers from Immigrant Diversity in Cities," Working Papers 15-37, Center for Economic Studies, U.S. Census Bureau.
    10. Maite Alguacil & Luisa Alamá-Sabater, 2021. "Migration in Spain: The Role of Cultural Diversity Revisited," Politics and Governance, Cogitatio Press, vol. 9(4), pages 118-132.
    11. Dr Max Nathan, 2013. "The wider economic impacts of high-skilled migrants: a survey of the literature," National Institute of Economic and Social Research (NIESR) Discussion Papers 413, National Institute of Economic and Social Research.
    12. Viggo Nordvik & Liv Osland & Inge Thorsen & Ingrid Sandvig Thorsen, 2019. "Capitalization of neighbourhood diversity and segregation," Environment and Planning A, , vol. 51(8), pages 1775-1799, November.
    13. Kemeny, Thomas, 2013. "Immigrant diversity and economic development in cities: a critical review," LSE Research Online Documents on Economics 58458, London School of Economics and Political Science, LSE Library.
    14. Silje Haus-Reve & Abigail Cooke, 2019. "Do regional social capital and trust matter for immigrant diversity and wages?," Papers in Evolutionary Economic Geography (PEEG) 1932, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2019.
    15. Antonio Accetturo & Francesco Manaresi & Sauro Mocetti & Elisabetta Olivieri, 2012. "Don't stand so close to me: the urban impact of immigration," Temi di discussione (Economic working papers) 866, Bank of Italy, Economic Research and International Relations Area.
    16. Zhiling Wang, 2020. "The incompatibility of local economic prosperity and migrants’ social integration: evidence from the Netherlands," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(1), pages 57-78, February.
    17. Gianmarco Ottaviano & Giovanni Peri, 2013. "New Frontiers Of Immigration Research: Cities And Firms," Journal of Regional Science, Wiley Blackwell, vol. 53(1), pages 1-7, February.
    18. Zhiling Wang & Thomas de Graaff & Peter Nijkamp, 2014. "Cultural Diversity and Cultural Distance as Choice Determinants of Migration Destination," Tinbergen Institute Discussion Papers 14-066/VIII, Tinbergen Institute.
    19. Ceren Ozgen & Peter Nijkamp & Jacques Poot, 2013. "The impact of cultural diversity on firm innovation: evidence from Dutch micro-data," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 2(1), pages 1-24, December.
    20. Cooke, Abigail & Kemeny, Thomas, 2017. "Cities, immigrant diversity, and complex problem solving," Research Policy, Elsevier, vol. 46(6), pages 1175-1185.
    21. Daniele Mantegazzi & Philip McCann & Viktor Venhorst, 2020. "The impact of language borders on the spatial decay of agglomeration and competition spillovers," Journal of Regional Science, Wiley Blackwell, vol. 60(3), pages 558-577, June.
    22. Bayar, Mehmet, 2016. "The impact of cultural diversity on the German housing market," Ruhr Economic Papers 662, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    23. Eva M. Buitrago & M. Ángeles Caraballo, 2022. "Measuring social diversity in economic literature: An overview for cross‐country studies," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 880-934, September.
    24. Ceren Ozgen, 2021. "The economics of diversity: Innovation, productivity and the labour market," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1168-1216, September.
    25. Hoang, Trung Xuan & Nguyen, Thang Chien & Nga, Van Thi Le, 2022. "Impact of Internal Migration Diversity on Child Welfare: Evidence from Vietnam," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 63(2), pages 149-168, December.
    26. Mª Ángeles Caraballo & Eva Mª Buitrago, 2019. "Ethnolinguistic Diversity and Education. A Successful Pairing," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    27. Zhiling Wang & Thomas de Graaff & Peter Nijkamp, 2014. "The choice of migration destinations: cultural diversity versus cultural distance," ERSA conference papers ersa14p1147, European Regional Science Association.
    28. David C. Maré & Jacques Poot, 2019. "Valuing cultural diversity of cities," Working Papers 19_05, Motu Economic and Public Policy Research.
    29. Reynal-Querol, Marta & García-Montalvo, José, 2017. "Ethnic Diversity and Growth: Revisiting the Evidence," CEPR Discussion Papers 12400, C.E.P.R. Discussion Papers.
    30. Simonetta Longhi, 2014. "Cultural diversity and subjective well-being," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 3(1), pages 1-19, December.
    31. José Garcia Montalvo & Marta Reynal-Querol, 2017. "Ethnic diversity and growth: revisiting the evidence," Economics Working Papers 1585, Department of Economics and Business, Universitat Pompeu Fabra.
    32. Esther Havekes & Marcel Coenders & Karien Dekker, 2014. "Interethnic attitudes in urban neighbourhoods: The impact of neighbourhood disorder and decline," Urban Studies, Urban Studies Journal Limited, vol. 51(12), pages 2665-2684, September.
    33. Chang, Zheng, 2018. "Immigration and the Neighborhood: New Evidence from Recent Immigrants in Hong Kong," International Real Estate Review, Global Social Science Institute, vol. 21(4), pages 549-566.
    34. Cem Ozguzel, 2019. "Essays on migration and productivity [Essais sur les migrations et la productivité]," PSE-Ecole d'économie de Paris (Postprint) tel-03381203, HAL.
    35. Abigail Cooke & Thomas Kemeny, 2016. "Immigrant Diversity and Complex Problem Solving," Working Papers 16-04, Center for Economic Studies, U.S. Census Bureau.
    36. María Delgado Gómez-Flors & Maite Alguacil, 2018. "The Impact of Immigrant Diversity on Wages. The Spanish Experience," Sustainability, MDPI, vol. 10(9), pages 1-29, September.

  10. Peter Mulder & Henri L.F. de Groot, 2012. "Structural Change and Convergence of Energy Intensity across OECD Countries, 1970-2005," Tinbergen Institute Discussion Papers 12-027/3, Tinbergen Institute.

    Cited by:

    1. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2021. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Working Papers 2021-22, Faculty of Economics and Statistics, Universität Innsbruck.
    2. Ward, Hauke & Radebach, Alexander & Vierhaus, Ingmar & Fügenschuh, Armin & Steckel, Jan Christoph, 2017. "Reducing global CO2 emissions with the technologies we have," Resource and Energy Economics, Elsevier, vol. 49(C), pages 201-217.
    3. Vinod Mishra & Russell Smyth, 2014. "Convergence in energy consumption per capita among ASEAN countries," Monash Economics Working Papers 22-14, Monash University, Department of Economics.
    4. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    5. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    6. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    7. Baran Doda, 2018. "Tales From The Tails: Sector-Level Carbon Intensity Distribution," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-27, November.
    8. Antonietti, Roberto & Fontini, Fulvio, 2019. "Does energy price affect energy efficiency? Cross-country panel evidence," Energy Policy, Elsevier, vol. 129(C), pages 896-906.
    9. Montalbano, P. & Nenci, S., 2019. "Energy efficiency, productivity and exporting: Firm-level evidence in Latin America," Energy Economics, Elsevier, vol. 79(C), pages 97-110.
    10. Arik Levinson, 2017. "Energy Intensity: Prices, Policy, or Composition in US States," Working Papers gueconwpa~17-17-04, Georgetown University, Department of Economics.
    11. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    12. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    13. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    14. Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
    15. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    16. Ahmed Oluwatobi Adekunle & Biliqees Ayoola Abdulmumin & Joseph Olorunfemi Akande & Kehinde Gabriel Ajose, 2022. "Modelling Aggregate Energy Consumption for Growth in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 389-395, November.
    17. Yinnan He & Ruxiang Qin & Bangjun Wang, 2023. "On the Club Convergence in China’s Provincial Coal Consumptions: Evidence from a Nonlinear Time-Varying Factor Model," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    18. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    19. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    20. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    21. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2022. "On the co-evolution of PM2.5 concentrations and income in China: A joint distribution dynamics approach," Energy Economics, Elsevier, vol. 105(C).
    22. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    23. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    24. Csereklyei, Zszsanna & Varas, Mar Rubio & Stern, David I., 2014. "Energy and Economic Growth: The Stylized Facts," Working Papers 249502, Australian National University, Centre for Climate Economics & Policy.
    25. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    26. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    27. Campiglio, Emanuele, 2014. "The structural shift to green services: A two-sector growth model with public capital and open-access resources," Structural Change and Economic Dynamics, Elsevier, vol. 30(C), pages 148-161.
    28. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    29. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    30. Yao Wang & Qiang Yang & Xuenan Wu & Ruichen Wang & Tilei Gao & Yuntong Liu, 2023. "A Study of Trends in Low-Energy Development Patterns in China: A Data-Driven Approach," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    31. Peng, Jiachao & Xiao, Jianzhong & Zhang, Lian & Wang, Teng, 2020. "The impact of China's ‘Atmosphere Ten Articles’ policy on total factor productivity of energy exploitation: Empirical evidence using synthetic control methods," Resources Policy, Elsevier, vol. 65(C).
    32. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    33. Calcagnini, Giorgio & Giombini, Germana & Travaglini, Giuseppe, 2016. "Modelling energy intensity, pollution per capita and productivity in Italy: A structural VAR approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1482-1492.
    34. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Stamp, Alice V., 2021. "Is the service industry really low-carbon? Energy, jobs and realistic country GHG emissions reductions," Applied Energy, Elsevier, vol. 292(C).
    35. Marco Amendola & Francesco Lamperti & Andrea Roventini & Alessandro Sapio, 2023. "Energy efficiency policies in an agent-based macroeconomic model," LEM Papers Series 2023/20, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    36. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    37. J. Barrera-Santana & Gustavo A. Marrero & Luis A. Puch & Antonia Díaz, 2021. "CO2 emissions and energy technologies in Western Europe," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 105-150, June.
    38. Lei Jiang & Henk Folmer & Minhe Ji & Jianjun Tang, 2017. "Energy efficiency in the Chinese provinces: a fixed effects stochastic frontier spatial Durbin error panel analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 58(2), pages 301-319, March.
    39. Zsuzsanna Csereklyei & David I. Stern, 2014. "Global Energy Use: Decoupling or Convergence?," CCEP Working Papers 1419, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    40. Jules-Daniel Wurlod & Joëlle Noailly, 2016. "The impact of green innovation on energy intensity: an empirical analysis for 14 industrial sectors in OECD countries," CIES Research Paper series 42-2016, Centre for International Environmental Studies, The Graduate Institute.
    41. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    42. Hannah Förster & Katja Schumacher & Enrica de Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European energy efficiency and decarbonization strategies beyond 2030 : A sectoral multi-model decomposition," Post-Print halshs-00939253, HAL.
    43. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2019. "Does China Fall into Poverty-Environment Traps? Evidence from Long-term Income Dynamics and Urban Air Pollution," ETA: Economic Theory and Applications 285027, Fondazione Eni Enrico Mattei (FEEM).
    44. Muhammad Shahbaz & Avik Sinha & Andreas Kontoleon, 2022. "Decomposing scale and technique effects of economic growth on energy consumption: Fresh evidence from developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1848-1869, April.
    45. Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
    46. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    47. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    48. Kounetas, Kostas & Zervopoulos, Panagiotis, 2017. "Annex I and non-Annex I countries’productive performance revisited using a generalized directional distance function under a metafrontier framework: Is there any convergence-divergence pattern for tec," MPRA Paper 80904, University Library of Munich, Germany.
    49. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    50. Toshiyuki Sueyoshi & Mika Goto, 2023. "Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019," Energies, MDPI, vol. 16(4), pages 1-29, February.
    51. Sauter, Caspar & Grether, Jean-Marie & Mathys, Nicole A., 2016. "Geographical spread of global emissions: Within-country inequalities are large and increasing," Energy Policy, Elsevier, vol. 89(C), pages 138-149.
    52. Dhani Setyawan & Rakhmin Dyarto & Hadi Setiawan & Rita Helbra Tenrini & Sofia Arie Damayanty, 2020. "Examining the Driving Forces Affecting Energy Intensity during Financial Crisis: Evidence from ASEAN-6 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 71-81.
    53. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    54. Xican Xi & Adrian Peralta-Alva & Marina Mendes Tavares, 2017. "Accounting for Energy Intensity Across Countries: Composition, Prices and Technology," 2017 Meeting Papers 1531, Society for Economic Dynamics.
    55. Shenglang Yang, 2016. "Intangible capital and sectoral energy intensity: Evidence from 40 economies," ANU Working Papers in Economics and Econometrics 2016-646, Australian National University, College of Business and Economics, School of Economics.
    56. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    57. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.
    58. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    59. Qi, Shaozhou & Peng, Huarong & Zhang, Xiaoling & Tan, Xiujie, 2019. "Is energy efficiency of Belt and Road Initiative countries catching up or falling behind? Evidence from a panel quantile regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    60. Zhu, Junpeng & Lin, Boqiang, 2020. "Convergence analysis of city-level energy intensity in China," Energy Policy, Elsevier, vol. 139(C).
    61. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    62. Christian Haas & Karol Kempa, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," MAGKS Papers on Economics 201610, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    63. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
    64. Sebestyénné Szép, Tekla, 2016. "Energetikai konvergencia az Energia 2020 stratégia tükrében. A konvergenciaszámítások alkalmazásának egy alternatív lehetősége [Energy convergence in the light of the Energy 2020 strategy. An alter," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 564-587.
    65. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    66. Shen, Zhiyang & Zhao, Yuntian & Guneri, Fatma & Yang, Yiping & Wang, Songkai & Deng, Haiyan, 2023. "Does the rise of China promote the sustainable development of OECD countries? A geopolitical perspective," Resources Policy, Elsevier, vol. 85(PB).
    67. Choi, Bongseok, 2020. "Productivity and misallocation of energy resources: Evidence from Korea’s manufacturing Sector," Resource and Energy Economics, Elsevier, vol. 61(C).
    68. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
    69. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    70. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    71. Fallahi, Firouz & Voia, Marcel-Cristian, 2015. "Convergence and persistence in per capita energy use among OECD countries: Revisited using confidence intervals," Energy Economics, Elsevier, vol. 52(PA), pages 246-253.
    72. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    73. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    74. Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
    75. Henriques, Sofia Teives & Borowiecki, Karol J., 2017. "The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800," Energy Policy, Elsevier, vol. 101(C), pages 537-549.
    76. Pu, Zhengning & Yang, Mingyan, 2022. "The impact of city commercial banks’ expansion on China’s regional energy efficiency," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 10-28.
    77. Fallahi, Firouz, 2017. "Stochastic convergence in per capita energy use in world," Energy Economics, Elsevier, vol. 65(C), pages 228-239.
    78. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    79. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    80. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
    81. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    82. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    83. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    84. Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    85. Paul Evans & Ji Uk Kim, 2016. "Convergence analysis as spatial dynamic panel regression and distribution dynamics of $$\hbox {CO}_{2}$$ CO 2 emissions in Asian countries," Empirical Economics, Springer, vol. 50(3), pages 729-751, May.
    86. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    87. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    88. Chen, Maozhi & Sinha, Avik & Hu, Kexiang & Shah, Muhammad Ibrahim, 2020. "Impact of Technological Innovation on Energy Efficiency in Industry 4.0 Era: Moderation of Shadow Economy in Sustainable Development," MPRA Paper 104842, University Library of Munich, Germany, revised 2020.
    89. Shahbaz, Muhammad & Sinha, Avik & Kontoleon, Andreas, 2020. "Decomposing Scale and Technique Effects of Economic Growth on Energy Consumption: Fresh Evidence in Developing Economies," MPRA Paper 102111, University Library of Munich, Germany, revised 27 Jul 2020.
    90. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    91. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    92. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2014. "Convergence of carbon dioxide performance across Swedish industrial sectors An environmental index approach," CERE Working Papers 2014:10, CERE - the Center for Environmental and Resource Economics.
    93. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    94. Gustavo A. Marrero & Francisco J. Ramos-Real, 2013. "Activity Sectors and Energy Intensity: Decomposition Analysis and Policy Implications for European Countries (1991–2005)," Energies, MDPI, vol. 6(5), pages 1-20, May.
    95. Konstantin Sommer & Henri L.F. de Groot & Franc Klaassen, 2022. "The effects of market integration on pollution: an analysis of EU enlargements," Tinbergen Institute Discussion Papers 22-039/VI, Tinbergen Institute, revised 21 Mar 2023.
    96. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    97. Meng, Ming & Payne, James E. & Lee, Junsoo, 2013. "Convergence in per capita energy use among OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 536-545.
    98. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
    99. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2020. "Energy intensity and green energy innovation: Checking heterogeneous country effects in the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 328-343.
    100. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    101. Deichmann, Uwe & Reuter, Anna & Vollmer, Sebastian & Zhang, Fan, 2019. "The relationship between energy intensity and economic growth: New evidence from a multi-country multi-sectorial dataset," World Development, Elsevier, vol. 124(C), pages 1-1.
    102. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2022. "Institutional quality and its spatial spillover effects on energy efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    103. Victor Moutinho, 2015. "Is there Convergence and Causality between the Drivers of Energy-Related Carbon Dioxide Emissions among the Portuguese Tourism Industry?," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 828-840.
    104. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    105. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    106. Chao Bao & Hongjie Wang, 2019. "Trans-Provincial Convergence of per Capita Energy Consumption in Urban China, 1990–2015," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    107. Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
    108. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    109. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    110. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    111. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    112. Wesley Burnett, J. & Madariaga, Jessica, 2017. "The convergence of U.S. state-level energy intensity," Energy Economics, Elsevier, vol. 62(C), pages 357-370.
    113. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    114. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    115. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    116. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    117. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    118. Levinson, Arik, 2021. "Energy intensity: Deindustrialization, composition, prices, and policies in U.S. states," Resource and Energy Economics, Elsevier, vol. 65(C).
    119. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    120. Hongxu Guo & Zihan Xie & Rong Wu, 2021. "Evaluating Green Innovation Efficiency and Its Socioeconomic Factors Using a Slack-Based Measure with Environmental Undesirable Outputs," IJERPH, MDPI, vol. 18(24), pages 1-20, December.
    121. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    122. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    123. Peng, Hua-Rong & Tan, Xiujie & Managi, Shunsuke & Taghizadeh-Hesary, Farhad, 2022. "Club convergence in energy efficiency of Belt and Road Initiative countries: The role of China’s outward foreign direct investment," Energy Policy, Elsevier, vol. 168(C).
    124. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.
    125. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.

  11. Peter Mulder & Henri L.F. de Groot, 2012. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987-2005," Tinbergen Institute Discussion Papers 12-049/3, Tinbergen Institute.

    Cited by:

    1. Grossi, Luigi & Mussini, Mauro, 2018. "A spatial shift-share decomposition of electricity consumption changes across Italian regions," Energy Policy, Elsevier, vol. 113(C), pages 278-293.
    2. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    3. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    4. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    5. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.

  12. Peter Mulder & Henri L.F. de Groot, 2004. "Sectoral Energy- and Labour-Productivity Convergence," Tinbergen Institute Discussion Papers 04-003/3, Tinbergen Institute.

    Cited by:

    1. M. van Dijk & R. Nahuis & D. Waagmeester, 2005. "Does Public Service Broadcasting Serve the Public? The Future of Television in the Changing Media Landscape," Working Papers 05-13, Utrecht School of Economics.
    2. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    3. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    4. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    5. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    6. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    7. Ma, Le & Hosseini, M. Reza & Jiang, Weiling & Martek, Igor & Mills, Anthony, 2018. "Energy productivity convergence within the Australian construction industry: A panel data study," Energy Economics, Elsevier, vol. 72(C), pages 313-320.
    8. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    9. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    10. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    11. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
    12. Dalgaard, Carl-Johan & Strulik, Holger, 2011. "Energy distribution and economic growth," Resource and Energy Economics, Elsevier, vol. 33(4), pages 782-797.
    13. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    14. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    15. Calcagnini, Giorgio & Giombini, Germana & Travaglini, Giuseppe, 2016. "Modelling energy intensity, pollution per capita and productivity in Italy: A structural VAR approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1482-1492.
    16. Lucas Bretschger & Sjak Smulders, 2007. "Sustainable Resource Use and Economic Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 1-13, January.
    17. Lucas Bretschger, 2010. "Energy Prices, Growth, and the Channels in Between: Theory and Evidence," OxCarre Working Papers 034, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    18. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    19. Akram, Vaseem & Rath, Badri Narayan & Sahoo, Pradipta Kumar, 2020. "Stochastic conditional convergence in per capita energy consumption in India," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 224-240.
    20. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    21. Qin, Weiguang & Bhattarai, Keshab, 2021. "Convergence in Labor Productivity across Provinces and Production Sectors in China," MPRA Paper 111191, University Library of Munich, Germany.
    22. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.
    23. Vo, Duc Hong & Vo, Long Hai & Ho, Chi Minh, 2022. "Regional convergence of nonrenewable energy consumption in Vietnam," Energy Policy, Elsevier, vol. 169(C).
    24. Peter Mulder & Henri de Groot, 2003. "International comparison of sectoral energy- and labour-productivity performance; stylised facts and decomposition of trends," CPB Discussion Paper 22, CPB Netherlands Bureau for Economic Policy Analysis.
    25. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    26. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    27. Henri de Groot & Peter Mulder, 2011. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987–2005," CPB Discussion Paper 190, CPB Netherlands Bureau for Economic Policy Analysis.
    28. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    29. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    30. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    31. Vu, Khuong & Hartley, Kris, 2022. "Effects of digital transformation on electricity sector growth and productivity: A study of thirteen industrialized economies," Utilities Policy, Elsevier, vol. 74(C).
    32. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    33. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    34. Le Pen, Yannick & Sévi, Benoît, 2010. "What trends in energy efficiencies? Evidence from a robust test," Energy Economics, Elsevier, vol. 32(3), pages 702-708, May.
    35. Mohammadi, Hassan & Ram, Rati, 2012. "Cross-country convergence in energy and electricity consumption, 1971–2007," Energy Economics, Elsevier, vol. 34(6), pages 1882-1887.
    36. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    37. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    38. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    39. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    40. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
    41. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
    42. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    43. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    44. Giulio Guarini & Giuseppe Garofalo & Alessandro Federici, 2014. "A Virtuous Cumulative Growth Circle among Innovation, Inclusion and Sustainability? A Structuralist-Keynesian Analysis with an Application on Europe," GREDEG Working Papers 2014-39, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.

  13. Peter Mulder & Henri L.F. de Groot, 2004. "Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors," Tinbergen Institute Discussion Papers 04-005/3, Tinbergen Institute.

    Cited by:

    1. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    2. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    3. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    4. Idoko Ahmed Itodo & Shahrzad Safaeimanesh & Festus Victor Bekun, 2017. "Energy Use and Growth of Manufacturing Sector: Evidence from Turkey," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 3(1), pages 88-96, March.

  14. Henri L.F. de Groot & Peter Mulder & Daan P. van Soest, 2004. "Subsidizing the Adoption of Energy-Saving Technologies: Analyzing the Impact of Uncertainty, Learning and Maturation," Tinbergen Institute Discussion Papers 03-019/3, Tinbergen Institute.

    Cited by:

    1. Théophile T. Azomahou & Raouf Boucekkine & Phu Nguyen-Van, 2012. "Vintage capital and the diffusion of clean technologies," International Journal of Economic Theory, The International Society for Economic Theory, vol. 8(3), pages 277-300, September.
    2. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.

  15. Peter Mulder & Henri L.F. de Groot, 2004. "International Comparisons of Sectoral Energy- and Labour-Productivity Performance: Stylised Facts and Decomposition of Trends," Tinbergen Institute Discussion Papers 04-007/3, Tinbergen Institute.

    Cited by:

    1. Lukas Hardt & John Barrett & Peter G. Taylor & Timothy J. Foxon, 2020. "Structural Change for a Post-Growth Economy: Investigating the Relationship between Embodied Energy Intensity and Labour Productivity," Sustainability, MDPI, vol. 12(3), pages 1-25, January.
    2. Vu, Khuong & Hartley, Kris, 2022. "Sources of transport sector labor productivity performance in industrialized countries: Insights from a decomposition analysis," Transport Policy, Elsevier, vol. 129(C), pages 204-218.
    3. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    4. Henri de Groot & Peter Mulder, 2011. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987–2005," CPB Discussion Paper 190, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Peter Mulder & Henri L.F. de Groot, 2004. "Sectoral Energy- and Labour-Productivity Convergence," Tinbergen Institute Discussion Papers 04-003/3, Tinbergen Institute.
    6. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.
    7. Giulio Guarini & Giuseppe Garofalo & Alessandro Federici, 2014. "A Virtuous Cumulative Growth Circle among Innovation, Inclusion and Sustainability? A Structuralist-Keynesian Analysis with an Application on Europe," GREDEG Working Papers 2014-39, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.

Articles

  1. Hengky Kurniawan & Henri L. F. de Groot & Peter Mulder, 2019. "Are poor provinces catching‐up the rich provinces in Indonesia?," Regional Science Policy & Practice, Wiley Blackwell, vol. 11(1), pages 89-108, March.

    Cited by:

    1. Carlos Mendez & Mitsuhiko Kataoka, 2021. "Disparities in regional productivity, capital accumulation, and efficiency across Indonesia: A club convergence approach," Review of Development Economics, Wiley Blackwell, vol. 25(2), pages 790-809, May.
    2. Ragdad Cani Miranti, 2021. "Is regional poverty converging across Indonesian districts? A distribution dynamics and spatial econometric approach," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 851-883, October.
    3. Tsovinar J. Karapetyan & Arpenik Muradyan & Vanine A. Yeranosyan & Erik M. Grigoryan, 2021. "The structural changes in Armenian Community budgets within the process of community consolidation," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 559-572, June.
    4. Anang Budi Gunawan & Carlos Mendez & Shigeru Otsubo, 2021. "Provincial income convergence clubs in Indonesia: Identification and conditioning factors," Growth and Change, Wiley Blackwell, vol. 52(4), pages 2540-2575, December.
    5. Santos-Marquez, Felipe & Mendez, Carlos, 2019. "Regional Convergence, Spatial Scale, and Spatial Dependence: Evidence from Homicides and Personal Injuries in Colombia 2010-2018," MPRA Paper 97093, University Library of Munich, Germany.
    6. Aginta, Harry & Gunawan, Anang Budi & Mendez, Carlos, 2020. "Regional Income Disparities and Convergence Clubs in Indonesia: New District-Level Evidence 2000-2017," MPRA Paper 99079, University Library of Munich, Germany.
    7. Mitsuhiko Kataoka, 2022. "Cyclical shocks and spatial association of Indonesia's district‐level per capita income," Asian Economic Journal, East Asian Economic Association, vol. 36(3), pages 261-287, September.
    8. Nurhira Abdul Kadir & Heike Schütze & Kathryn M. Weston, 2021. "Educating Medical Students for Practice in a Changing Landscape: An Analysis of Public Health Topics within Current Indonesian Medical Programs," IJERPH, MDPI, vol. 18(21), pages 1-11, October.
    9. Mitsuhiko Kataoka & Al-Ikram Taupan Darangina, 2023. "Imperial Manila syndrome in poverty reduction: a province-level spatial distribution analysis," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 1-28, March.
    10. Carlos Mendez, 2020. "Regional efficiency convergence and efficiency clusters," Asia-Pacific Journal of Regional Science, Springer, vol. 4(2), pages 391-411, June.
    11. Mendez-Guerra, Carlos & Kataoka, Mitsuhiko, 2020. "Disparities in Regional Productivity, Capital Accumulation, and Efficiency across Indonesia: A Convergence Clubs Approach," MPRA Paper 99322, University Library of Munich, Germany.
    12. Ensar Yılmaz & Zeynep Kaplan, 2022. "Regional polarization in Turkey," Growth and Change, Wiley Blackwell, vol. 53(1), pages 410-431, March.
    13. Muhammad Hidayat & Nasri Bachtiar & Sjafrizal Sjafrizal & Elvina Primayesa, 2022. "Does Investment and Energy Infrastructure Influence Convergence in Sumatra Island, Indonesia?," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 274-281, July.

  2. Mahumane, Gilberto & Mulder, Peter, 2019. "Expanding versus greening? Long-term energy and emission transitions in Mozambique," Energy Policy, Elsevier, vol. 126(C), pages 145-156.

    Cited by:

    1. Juliana Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy N. Jiménez-García & Wilfredo C. Flores & Harold R. Chamorro, 2022. "Scenario Analysis of an Electric Power System in Colombia Considering the El Niño Phenomenon and the Inclusion of Renewable Energies," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Francisco Chicombo, Adélia Filosa & Musango, Josephine Kaviti, 2022. "Towards a theoretical framework for gendered energy transition at the urban household level: A case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Mahumane, Gilberto & Mulder, Peter, 2022. "Urbanization of energy poverty? The case of Mozambique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

  3. Jessie Bakens & Raymond J.G.M. Florax & Peter Mulder, 2018. "Ethnic drift and white flight: A gravity model of neighborhood formation," Journal of Regional Science, Wiley Blackwell, vol. 58(5), pages 921-948, November.
    See citations under working paper version above.
  4. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    See citations under working paper version above.
  5. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.

    Cited by:

    1. Giovanni Millo, 2022. "The generalized spatial random effects model in R," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-18, December.
    2. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    3. Ma, Le & Hosseini, M. Reza & Jiang, Weiling & Martek, Igor & Mills, Anthony, 2018. "Energy productivity convergence within the Australian construction industry: A panel data study," Energy Economics, Elsevier, vol. 72(C), pages 313-320.
    4. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2023. "Fossil fuels subsidy removal and the EU carbon neutrality policy," Energy Economics, Elsevier, vol. 119(C).
    5. Vladimír Baláž & Eduard Nežinský & Tomáš Jeck & Richard Filčák, 2020. "Energy and Emission Efficiency of the Slovak Regions," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    6. Samargandi, Nahla, 2017. "Sector value addition, technology and CO2 emissions in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 868-877.
    7. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    8. Cong Khai Dinh & Quang Thanh Ngo & Trung Thanh Nguyen, 2021. "Medium- and High-Tech Export and Renewable Energy Consumption: Non-Linear Evidence from the ASEAN Countries," Energies, MDPI, vol. 14(15), pages 1-16, July.
    9. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    10. Weiwei Liu & Xiandong Xu & Zhile Yang & Jianyu Zhao & Jing Xing, 2016. "Impacts of FDI Renewable Energy Technology Spillover on China’s Energy Industry Performance," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    11. Chongfeng Wang & Gupeng Zhang, 2019. "Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 561-593, May.
    12. Johan Graafland, 2020. "When Does Economic Freedom Promote Well Being? On the Moderating Role of Long-Term Orientation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 149(1), pages 127-153, May.
    13. Veronika Varvařovská & Michaela Staňková, 2021. "Does the Involvement of "Green Energy" Increase the Productivity of Companies in the Production of the Electricity Sector?," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 152-164.
    14. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    15. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    16. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    17. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    18. Fan Yang & Yongrok Choi & Hyoungsuk Lee, 2021. "Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    19. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    20. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    21. Iman Miremadi & Yadollah Saboohi, 2018. "Planning for Investment in Energy Innovation: Developing an Analytical Tool to Explore the Impact of Knowledge Flow," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 7-19.
    22. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    23. Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    24. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    25. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    26. Kang Pan & Rong Liu & Xiaowei Chen & Ying Huang, 2023. "How Does Industrial Agglomeration Affect Exports? Evidence from Chinese Province-Industry Panel Data," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    27. Chatzistamoulou, Nikos & Kounetas, Kostas & Tsekouras, Kostas, 2022. "Technological hierarchies and learning: Spillovers, complexity, relatedness, and the moderating role of absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    28. Liu, Zhen & Zhang, Meiling & Li, Qiuming & Zhao, Xing, 2023. "The impact of green trade barriers on agricultural green total factor productivity: Evidence from China and OECD countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 319-331.
    29. Pacelli, Vincenzo & Miglietta, Federica & Foglia, Matteo, 2022. "The extreme risk connectedness of the new financial system: European evidence," International Review of Financial Analysis, Elsevier, vol. 84(C).
    30. Sohag, Kazi & Begum, Rawshan Ara & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia," Energy, Elsevier, vol. 90(P2), pages 1497-1507.
    31. Kazem Biabany Khameneh & Reza Najarzadeh & Hassan Dargahi & Lotfali Agheli, 2021. "The Role of Global Value Chains in Carbon Intensity Convergence: A Spatial Econometrics Approach," Papers 2111.00566, arXiv.org.

  6. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Cited by:

    1. Mussini, Mauro, 2020. "Inequality and convergence in energy intensity in the European Union," Applied Energy, Elsevier, vol. 261(C).
    2. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    3. Halkos, George & Moll de Alba, Jaime & Todorov, Valentin, 2021. "Analyzing manufacturing sector and selected development challenges: A panel data analysis," Energy, Elsevier, vol. 235(C).
    4. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    5. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    6. Saeed Moshiri and Nana Duah, 2016. "Changes in Energy Intensity in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    8. Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
    9. Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
    10. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    11. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    12. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    13. Luigi Grossi & Mauro Mussini, 2017. "Inequality in Energy Intensity in the EU-28: Evidence from a New Decomposition Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    14. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    15. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    16. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    17. Hart, Rob, 2018. "Rebound, directed technological change, and aggregate demand for energy," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 218-234.
    18. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    19. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    20. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    21. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    22. Hana Nielsen & Astrid Kander, 2020. "Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade," Energies, MDPI, vol. 13(14), pages 1-25, July.
    23. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.
    24. Peng, Hua-Rong & Tan, Xiujie & Managi, Shunsuke & Taghizadeh-Hesary, Farhad, 2022. "Club convergence in energy efficiency of Belt and Road Initiative countries: The role of China’s outward foreign direct investment," Energy Policy, Elsevier, vol. 168(C).
    25. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).

  7. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    See citations under working paper version above.
  8. Andadari, Roos Kities & Mulder, Peter & Rietveld, Piet, 2014. "Energy poverty reduction by fuel switching. Impact evaluation of the LPG conversion program in Indonesia," Energy Policy, Elsevier, vol. 66(C), pages 436-449.

    Cited by:

    1. Aziz, Shakila & Barua, Suborna & Chowdhury, Shahriar Ahmed, 2022. "Cooking energy use in Bangladesh: Evidence from technology and fuel choice," Energy, Elsevier, vol. 250(C).
    2. Gill-Wiehl, A. & Ray, I. & Kammen, D., 2021. "Is clean cooking affordable? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    4. Shi, Xinjie & Cui, Liu & Huang, Zuhui & Zeng, Pei & Qiu, Tongwei & Fu, Linlin & Jiang, Qiang, 2023. "Impact of internal migration on household energy poverty: Empirical evidence from rural China," Applied Energy, Elsevier, vol. 350(C).
    5. Evita Hanie Pangaribowo & Deden Dinar Iskandar, 2023. "Exploring socio-economic determinants of energy choices for cooking: the case of eastern Indonesian households," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7135-7148, July.
    6. Perros, T. & Allison, A.L. & Tomei, J. & Aketch, V. & Parikh, P., 2023. "Cleaning up the stack: Evaluating a clean cooking fuel stacking intervention in urban Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Kimemia, David & Van Niekerk, Ashley, 2017. "Cookstove options for safety and health: Comparative analysis of technological and usability attributes," Energy Policy, Elsevier, vol. 105(C), pages 451-457.
    8. Kwame Adjei-Mantey & Kenji Takeuchi & Peter Quartey, 2021. "Impact of LPG promotion program in Ghana: The role of distance to refill," Discussion Papers 2120, Graduate School of Economics, Kobe University.
    9. Bing Wang & Hua-Nan Li & Xiao-Chen Yuan & Zhen-Ming Sun, 2017. "Energy Poverty in China: A Dynamic Analysis Based on a Hybrid Panel Data Decision Model," Energies, MDPI, vol. 10(12), pages 1-14, November.
    10. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    11. Cutz, L. & Masera, O. & Santana, D. & Faaij, A.P.C., 2017. "Switching to efficient technologies in traditional biomass intensive countries: The resultant change in emissions," Energy, Elsevier, vol. 126(C), pages 513-526.
    12. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2018. "Energy Demand Substitution from Biomass to Imported Kerosene: Evidence from Tanzania," Feed the Future Innovation Lab for Food Security Policy Research Papers 279913, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    13. Imelda,, 2020. "Cooking that kills: Cleaner energy access, indoor air pollution, and health," Journal of Development Economics, Elsevier, vol. 147(C).
    14. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    15. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    16. Richard S. J. Tol, 2023. "Navigating the energy trilemma during geopolitical and environmental crises," Papers 2301.07671, arXiv.org.
    17. Troncoso, Karin & Soares da Silva, Agnes, 2017. "LPG fuel subsidies in Latin America and the use of solid fuels to cook," Energy Policy, Elsevier, vol. 107(C), pages 188-196.
    18. Aggarwal, Shubham & Kumar, Sudhanshu & Tiwari, Manoj Kumar, 2018. "Decision support system for Pradhan Mantri Ujjwala Yojana," Energy Policy, Elsevier, vol. 118(C), pages 455-461.
    19. Cheng, Zhiming & Tani, Massimiliano & Wang, Haining, 2021. "Energy poverty and entrepreneurship," Energy Economics, Elsevier, vol. 102(C).
    20. Imelda, Imelda, 2018. "The Response of Consumption to Fuel Switching : Panel Data Estimates," UC3M Working papers. Economics 27653, Universidad Carlos III de Madrid. Departamento de Economía.
    21. Avijit Saha & Md. Abdur Razzak & M. Rezwan Khan, 2021. "Electric Cooking Diary in Bangladesh: Energy Requirement, Cost of Cooking Fuel, Prospects, and Challenges," Energies, MDPI, vol. 14(21), pages 1-15, October.
    22. Jing Zhang & Roger Raufer & Lingxuan Liu, 2020. "Solar Home Systems for Clean Cooking: A Cost–Health Benefit Analysis of Lower-Middle-Income Countries in Southeast Asia," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    23. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    24. Anjali P. Verma & Imelda Imelda, 2022. "Clean Energy Access: Gender Disparity, Health, and Labour Supply," IHEID Working Papers 11-2022, Economics Section, The Graduate Institute of International Studies.
    25. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    26. Recep Ulucak & Ramazan Sari & Seyfettin Erdogan & Rui Alexandre Castanho, 2021. "Bibliometric Literature Analysis of a Multi-Dimensional Sustainable Development Issue: Energy Poverty," Sustainability, MDPI, vol. 13(17), pages 1-21, August.
    27. Jean Hugues Nlom & Aziz A. Karimov, 2015. "Modeling Fuel Choice among Households in Northern Cameroon," Sustainability, MDPI, vol. 7(8), pages 1-11, July.
    28. Oluwafemi Aladejuyigbe & Olawumi Dele Awolusi, 2021. "Global Energy Poverty: Nigeria as a Case Study," Information Management and Business Review, AMH International, vol. 13(3), pages 14-29.
    29. Xue, Yan & Hu, Dongmei & Irfan, Muhammad & Wu, Haitao & Hao, Yu, 2023. "Natural resources policy making through finance? The role of green finance on energy resources poverty," Resources Policy, Elsevier, vol. 85(PA).
    30. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    31. Sadath, Anver C. & Acharya, Rajesh H., 2017. "Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India," Energy Policy, Elsevier, vol. 102(C), pages 540-550.
    32. Tushar Bharati & Yiwei Qian & Jeonghwan Yun, 2020. "Fueling the Engines of Liberation with Cleaner Cooking Fuel," Economics Discussion / Working Papers 20-03, The University of Western Australia, Department of Economics.
    33. Dungang Zang & Fanghua Li & Abbas Ali Chandio, 2021. "Factors of Energy Poverty: Evidence from Tibet, China," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    34. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    35. Khalid Waleed & Faisal Mehmood Mirza, 2023. "Examining fuel choice patterns through household energy transition index: an alternative to traditional energy ladder and stacking models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6449-6501, July.
    36. Raad Al-Tal & Muntasir Murshed & Paiman Ahmad & Abdelrahman J. K. Alfar & Mohga Bassim & Mohamed Elheddad & Mira Nurmakhanova & Haider Mahmood, 2021. "The Non-Linear Effects of Energy Efficiency Gains on the Incidence of Energy Poverty," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    37. Anver C. Sadath & Rajesh H. Acharya, 2021. "Access to Modern Energy Services and Human Development in India: Has Government Policies Paid off?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 432-442.
    38. Wang, Hanjie & Maruejols, Lucie & Yu, Xiaohua, 2021. "Predicting energy poverty with combinations of remote-sensing and socioeconomic survey data in India: Evidence from machine learning," Energy Economics, Elsevier, vol. 102(C).
    39. Hilda Hilmiyati-Mas’adah & Achmad Sudiro & Fatchur Rohman & Agung Yuniarinto & Dzikri Firmansyah Hakam & Herry Nugraha, 2023. "Assessing the Impact of Urban Lifestyle and Consumption Values on Conversion Intention: A Study towards Energy Sustainability," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    40. Gould, Carlos F. & Schlesinger, Samuel B. & Molina, Emilio & Bejarano, M. Lorena & Valarezo, Alfredo & Jack, Darby W., 2020. "Household fuel mixes in peri-urban and rural Ecuador: Explaining the context of LPG, patterns of continued firewood use, and the challenges of induction cooking," Energy Policy, Elsevier, vol. 136(C).
    41. Rus’an Nasrudin & Qisha Quarina & Teguh Dartanto, 2022. "Revisiting the Energy-Happiness Paradox: A Quasi-Experimental Evidence of Electricity Access in Indonesia," Journal of Happiness Studies, Springer, vol. 23(7), pages 3549-3576, October.

  9. Mulder, Peter & de Groot, Henri L.F., 2013. "Dutch sectoral energy intensity developments in international perspective, 1987–2005," Energy Policy, Elsevier, vol. 52(C), pages 501-512.
    See citations under working paper version above.
  10. Jessie Bakens & Peter Mulder & Peter Nijkamp, 2013. "Economic Impacts Of Cultural Diversity In The Netherlands: Productivity, Utility, And Sorting," Journal of Regional Science, Wiley Blackwell, vol. 53(1), pages 8-36, February.
    See citations under working paper version above.
  11. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    See citations under working paper version above.
  12. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921. See citations under working paper version above.
  13. Peter Mulder & Henri Groot, 2007. "Sectoral Energy- and Labour-Productivity Convergence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 85-112, January.
    See citations under working paper version above.
  14. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.

    Cited by:

    1. Zhao-Hua Wang & Hua-Lin Zeng & Yi-Ming Wei & Yi-Xiang Zhang, 2011. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," CEEP-BIT Working Papers 26, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    2. Vinod Mishra & Russell Smyth, 2014. "Convergence in energy consumption per capita among ASEAN countries," Monash Economics Working Papers 22-14, Monash University, Department of Economics.
    3. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    4. Baran Doda, 2018. "Tales From The Tails: Sector-Level Carbon Intensity Distribution," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-27, November.
    5. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    6. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    7. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    8. Juan Antonio Duro Moreno & Emilio Padilla Rosa, "undated". "Análisis De Los Factores Determinantes De Las Desigualdades Internacionales En Las Emisiones De Co2 Per Cápita Aplicando El Enfoque Distributivo: Una Metodología De Descomposición Por Factores De Kaya," Working Papers 25-05 Classification-JEL , Instituto de Estudios Fiscales.
    9. Jean-Marie Grether & Nicole A. Mathys & Jaime de Melo, 2007. "Trade, Technique and Composition Effects: What is Behind the Fall in World-Wide SO2 Emissions 1990-2000?," Working Papers 2007.93, Fondazione Eni Enrico Mattei.
    10. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    11. Honma, Satoshi & Hu, Jin-Li, 2014. "Panel Data Parametric Frontier Technique for Measuring Total-factor Energy Efficiency: Application to Japanese Regions," MPRA Paper 54304, University Library of Munich, Germany.
    12. Ma, Le & Hosseini, M. Reza & Jiang, Weiling & Martek, Igor & Mills, Anthony, 2018. "Energy productivity convergence within the Australian construction industry: A panel data study," Energy Economics, Elsevier, vol. 72(C), pages 313-320.
    13. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    14. Serrenho, André Cabrera & Sousa, Tânia & Warr, Benjamin & Ayres, Robert U. & Domingos, Tiago, 2014. "Decomposition of useful work intensity: The EU (European Union)-15 countries from 1960 to 2009," Energy, Elsevier, vol. 76(C), pages 704-715.
    15. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    16. Jung‐Ah Hwang & Yeonbae Kim, 2017. "Effects of Environmental Regulations on Trade Flow in Manufacturing Sectors: Comparison of Static and Dynamic Effects of Environmental Regulations," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 688-706, July.
    17. Ku-Hsieh Chen & Jen-Chi Cheng & Joe-Ming Lee & Liou-Yuan Li & Sheng-Yu Peng, 2020. "Energy Efficiency: Indicator, Estimation, and a New Idea," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    18. Jordi Teixidó-Figueras & Juan Antonio Duro, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers XREAP2012-15, Xarxa de Referència en Economia Aplicada (XREAP), revised Sep 2012.
    19. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    20. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    21. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
    22. Lucia Lavric & Nick Hanley, 2014. "The effects of energy costs on firm re-location decisions," Discussion Papers in Environment and Development Economics 2014-02, University of St. Andrews, School of Geography and Sustainable Development.
    23. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    24. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    25. Manh-Hung Nguyen & Phu Nguyen Van, 2011. "Growth and convergence in a model with renewable and non-renewable resources: existence, transitional dynamics, and empirical evidence," Working Papers 07, Development and Policies Research Center (DEPOCEN), Vietnam.
    26. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    27. Calcagnini, Giorgio & Giombini, Germana & Travaglini, Giuseppe, 2016. "Modelling energy intensity, pollution per capita and productivity in Italy: A structural VAR approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1482-1492.
    28. Amador, João, 2012. "Energy content in manufacturing exports: A cross-country analysis," Energy Economics, Elsevier, vol. 34(4), pages 1074-1081.
    29. Lucas Bretschger, 2010. "Energy Prices, Growth, and the Channels in Between: Theory and Evidence," OxCarre Working Papers 034, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    30. Jean Marie Grether & Nicole A. Mathys & Jaime de Melo, 2008. "Global Manufacturing SO2 Emissions: Does Trade Matter?," Development Working Papers 263, Centro Studi Luca d'Agliano, University of Milano.
    31. Duro, Juan Antonio & Padilla, Emilio, 2011. "Inequality across countries in energy intensities: An analysis of the role of energy transformation and final energy consumption," Energy Economics, Elsevier, vol. 33(3), pages 474-479, May.
    32. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    33. Liangjun Yi & Wei Zhang & Yuanxin Liu & Weilin Zhang, 2021. "An Analysis of the Impact of Market Segmentation on Energy Efficiency: A Spatial Econometric Model Applied in China," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    34. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    35. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    36. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    37. Jordi Teixidó-Figueras & Juan Duro, 2015. "International Ecological Footprint Inequality: A Methodological Review and Some Results," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(4), pages 607-631, April.
    38. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.
    39. Tol, Richard S.J., 2006. "Carbon Dioxide Emission Scenarios for the USA," Climate Change Modelling and Policy Working Papers 12046, Fondazione Eni Enrico Mattei (FEEM).
    40. Peter Mulder & Raymond J.G.M. Florax & Henri L.F. de Groot, 2011. "A Spatial Perspective on Global Energy Productivity Trends," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 2, Edward Elgar Publishing.
    41. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    42. Llorca, Manuel & Rodriguez-Alvarez, Ana, 2023. "Economic, Environmental, and Energy Equity Convergence: Evidence of a Multi-Speed Europe?," Working Papers 7-2023, Copenhagen Business School, Department of Economics.
    43. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    44. Yueju Wang & Xingpeng Chen & Zilong Zhang & Bing Xue & Chenyu Lu, 2019. "Cross-City Convergence in Urban Green Space Coverage in China," Sustainability, MDPI, vol. 11(17), pages 1-11, August.
    45. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    46. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    47. Chen, Chung-Chiang, 2011. "An analytical framework for energy policy evaluation," Renewable Energy, Elsevier, vol. 36(10), pages 2694-2702.
    48. Romero-Ávila, Diego, 2008. "Convergence in carbon dioxide emissions among industrialised countries revisited," Energy Economics, Elsevier, vol. 30(5), pages 2265-2282, September.
    49. Henri de Groot & Peter Mulder, 2011. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987–2005," CPB Discussion Paper 190, CPB Netherlands Bureau for Economic Policy Analysis.
    50. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
    51. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    52. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    53. Roberto Martino & Phu Nguyen-Van, 2016. "Environmental Kuznets curve and environmental convergence: A unified empirical framework for CO2 emissions," Working Papers of BETA 2016-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    54. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    55. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    56. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    57. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    58. Peter Mulder & Henri L.F. de Groot, 2004. "Sectoral Energy- and Labour-Productivity Convergence," Tinbergen Institute Discussion Papers 04-003/3, Tinbergen Institute.
    59. Qu, Chenyao & Shao, Jun & Shi, Zhenkai, 2020. "Does financial agglomeration promote the increase of energy efficiency in China?," Energy Policy, Elsevier, vol. 146(C).
    60. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    61. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    62. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    63. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    64. Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    65. Su, Hongwei & Liang, Biming, 2021. "The impact of regional market integration and economic opening up on environmental total factor energy productivity in Chinese provinces," Energy Policy, Elsevier, vol. 148(PA).
    66. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    67. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    68. Persson, Tobias A. & Colpier, Ulrika Claeson & Azar, Christian, 2007. "Adoption of carbon dioxide efficient technologies and practices: An analysis of sector-specific convergence trends among 12 nations," Energy Policy, Elsevier, vol. 35(5), pages 2869-2878, May.
    69. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    70. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2014. "Convergence of carbon dioxide performance across Swedish industrial sectors An environmental index approach," CERE Working Papers 2014:10, CERE - the Center for Environmental and Resource Economics.
    71. Le Pen, Yannick & Sévi, Benoît, 2010. "What trends in energy efficiencies? Evidence from a robust test," Energy Economics, Elsevier, vol. 32(3), pages 702-708, May.
    72. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    73. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
    74. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    75. Mohammadi, Hassan & Ram, Rati, 2012. "Cross-country convergence in energy and electricity consumption, 1971–2007," Energy Economics, Elsevier, vol. 34(6), pages 1882-1887.
    76. Meng, Ming & Payne, James E. & Lee, Junsoo, 2013. "Convergence in per capita energy use among OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 536-545.
    77. Victor Moutinho, 2015. "Is there Convergence and Causality between the Drivers of Energy-Related Carbon Dioxide Emissions among the Portuguese Tourism Industry?," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 828-840.
    78. Huo, Da & Zhang, Xiaotao & Meng, Shuang & Wu, Gang & Li, Junhang & Di, Ruoqi, 2022. "Green finance and energy efficiency: Dynamic study of the spatial externality of institutional support in a digital economy by using hidden Markov chain," Energy Economics, Elsevier, vol. 116(C).
    79. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    80. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    81. Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
    82. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    83. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    84. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    85. Duro, Juan Antonio & Padilla, Emilio, 2006. "International inequalities in per capita CO2 emissions: A decomposition methodology by Kaya factors," Energy Economics, Elsevier, vol. 28(2), pages 170-187, March.
    86. Cebula, Richard J. & Connaughton, John E. & Swartz , Caroline, 2020. "Right-to-Work Laws as Economic Freedom: Their Role in Influencing the Geographic Pattern of Manufacturing Jobs, Incomes, and Finances," American Business Review, Pompea College of Business, University of New Haven, vol. 23(2), pages 431-450, November.
    87. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
    88. Zwane, Talent & Biyase, Mduduzi & Maleka, Mokgadi & Maluleka, Abelwe, 2020. "Technical Efficiency and Economic Growth in the SADC Region," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 73(2), pages 307-324.
    89. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    90. Yilmaz Bayar & Marius Dan Gavriletea, 2019. "Energy efficiency, renewable energy, economic growth: evidence from emerging market economies," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2221-2234, July.
    91. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    92. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    93. Tugcu, Can Tansel & Tiwari, Aviral Kumar, 2016. "Does renewable and/or non-renewable energy consumption matter for total factor productivity (TFP) growth? Evidence from the BRICS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 610-616.
    94. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    95. Wenhao Qi & Changxing Song & Meng Sun & Liguo Wang & Youcheng Han, 2022. "Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    96. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    97. Yu, Shiwei & Liu, Jie & Hu, Xing & Tian, Peng, 2022. "Does development of renewable energy reduce energy intensity? Evidence from 82 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    98. Peng, Hua-Rong & Tan, Xiujie & Managi, Shunsuke & Taghizadeh-Hesary, Farhad, 2022. "Club convergence in energy efficiency of Belt and Road Initiative countries: The role of China’s outward foreign direct investment," Energy Policy, Elsevier, vol. 168(C).
    99. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.

  15. Mulder, Peter & de Groot, Henri L. F. & Hofkes, Marjan W., 2003. "Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using," Resource and Energy Economics, Elsevier, vol. 25(1), pages 105-126, February.

    Cited by:

    1. Abdel Sabour, Sabry. A., 2005. "Quantifying the external cost of oil consumption within the context of sustainable development," Energy Policy, Elsevier, vol. 33(6), pages 809-813, April.
    2. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    3. Nakada, Minoru, 2005. "Deregulation in an energy market and its impact on R&D for low-carbon energy technology," Resource and Energy Economics, Elsevier, vol. 27(4), pages 306-320, November.
    4. Goetz, Renan-Ulrich & Hritonenko, Natali & Yatsenko, Yuri, 2008. "The optimal economic lifetime of vintage capital in the presence of operating costs, technological progress, and learning," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 3032-3053, September.
    5. Haunschmied, Josef L. & Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M., 2005. "Keeping up with the technology pace: A DNS-curve and a limit cycle in a technology investment decision problem," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 509-529, August.
    6. Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," RFF Working Paper Series dp-07-14, Resources for the Future.
    7. Lim, Jong-Soo & Kim, Yong-Gun, 2012. "Combining carbon tax and R&D subsidy for climate change mitigation," Energy Economics, Elsevier, vol. 34(S3), pages 496-502.
    8. Gillingham, Kenneth & Palmer, Karen, 2013. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," RFF Working Paper Series dp-13-02-rev, Resources for the Future.
    9. Halkos, George E. & Tzeremes, Nickolaos G., 2011. "Oil consumption and economic efficiency: A comparative analysis of advanced, developing and emerging economies," Ecological Economics, Elsevier, vol. 70(7), pages 1354-1362, May.
    10. Miketa, Asami & Mulder, Peter, 2005. "Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence," Energy Economics, Elsevier, vol. 27(3), pages 429-453, May.
    11. BERTINELLI, Luisito & STROBL, Eric & ZOU, Benteng, 2006. "Polluting technologies and sustainable economic development," LIDAM Discussion Papers CORE 2006052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Quantitative analysis of energy-efficiency strategy on CO2 emissions in the residential sector in Japan - Case study of Iwate prefecture," Applied Energy, Elsevier, vol. 85(4), pages 204-217, April.
    13. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
    14. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    15. Stefania Lovo & Michael Gasiorek & Richard Tol, 2014. "Investment in second-hand capital goods and energy intensity," GRI Working Papers 163, Grantham Research Institute on Climate Change and the Environment.
    16. Hritonenko, Natali & Yatsenko, Yuri, 2012. "Energy substitutability and modernization of energy-consuming technologies," Energy Economics, Elsevier, vol. 34(5), pages 1548-1556.
    17. Samaniego, Roberto, 2016. "The Embodiment Controversy: on the Policy Implications of Vintage Capital models," MPRA Paper 73348, University Library of Munich, Germany.
    18. Okay, Nesrin & Konukman, Alp Er S. & Akman, Ugur, 2009. "Analysis of Innovation and Energy Profiles in the Turkish Manufacturing Sector," MPRA Paper 16344, University Library of Munich, Germany.
    19. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    20. Okay, Nesrin & Akman, Ugur, 2009. "Analysis of ESCO Activities Using Country Indicators," MPRA Paper 17012, University Library of Munich, Germany.
    21. David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
    22. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Policy Research Working Paper Series 6929, The World Bank.
    23. Pohl, Birte & Mulder, Peter, 2013. "Explaining the Diffusion of Renewable Energy Technology in Developing Countries," GIGA Working Papers 217, GIGA German Institute of Global and Area Studies.
    24. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    25. Zhu, Junming & Niu, Limin & Ruth, Matthias & Shi, Lei, 2018. "Technological Change and Energy Efficiency in Large Chinese Firms," Ecological Economics, Elsevier, vol. 150(C), pages 241-250.
    26. Roberto Martino & Phu Nguyen-Van, 2016. "Environmental Kuznets curve and environmental convergence: A unified empirical framework for CO2 emissions," Working Papers of BETA 2016-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    27. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    28. Liang, Jing & Qiu, Yueming & James, Timothy & Ruddell, Benjamin L. & Dalrymple, Michael & Earl, Stevan & Castelazo, Alex, 2018. "Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 726-743.
    29. Seyed Vahid Vakili & Fabio Ballini & Dimitrios Dalaklis & Aykut I. Ölçer, 2022. "A Conceptual Transdisciplinary Framework to Overcome Energy Efficiency Barriers in Ship Operation Cycles to Meet IMO’s Initial Green House Gas Strategy Goals: Case Study for an Iranian Shipping Compan," Energies, MDPI, vol. 15(6), pages 1-25, March.
    30. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    31. Peter Mulder & Henri L.F. de Groot, 2004. "Sectoral Energy- and Labour-Productivity Convergence," Tinbergen Institute Discussion Papers 04-003/3, Tinbergen Institute.
    32. PEREZ-BARAHONA, Agustin & ZOU, Benteng, 2006. "A comparative study of energy saving technical progress in a vintage capital model," LIDAM Reprints CORE 1841, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    33. Lang, Ghislaine & Lanz, Bruno, 2022. "Climate policy without a price signal: Evidence on the implicit carbon price of energy efficiency in buildings," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    34. Suresh Muthulingam & Charles J. Corbett & Shlomo Benartzi & Bohdan Oppenheim, 2013. "Energy Efficiency in Small and Medium-Sized Manufacturing Firms: Order Effects and the Adoption of Process Improvement Recommendations," Manufacturing & Service Operations Management, INFORMS, vol. 15(4), pages 596-615, October.
    35. Kristina M. Lybecker, 2014. "Innovation and Technology Dissemination in Clean Technology Markets and The Developing World: The Role of Trade, Intellectual Property Rights, and Uncertainty," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 10(2), pages 7-38.
    36. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    37. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Energy-efficiency strategy for CO2 emissions in a residential sector in Japan," Applied Energy, Elsevier, vol. 85(2-3), pages 101-114, February.
    38. Manman Wang & Shuai Lian & Shi Yin & Hengmin Dong, 2020. "A Three-Player Game Model for Promoting the Diffusion of Green Technology in Manufacturing Enterprises from the Perspective of Supply and Demand," Mathematics, MDPI, vol. 8(9), pages 1-26, September.
    39. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.
    40. Saurabh Bansal & Suresh Muthulingam, 2022. "Can precise numbers boost energy efficiency?," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3264-3287, August.
    41. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    42. Carraro, Carlo & Gerlagh, Reyer & Zwaan, Bob van der, 2003. "Endogenous technical change in environmental macroeconomics," Resource and Energy Economics, Elsevier, vol. 25(1), pages 1-10, February.

  16. Peter Mulder & Jeroen C.J.M. Van Den Bergh, 2001. "Evolutionary Economic Theories of Sustainable Development," Growth and Change, Wiley Blackwell, vol. 32(1), pages 110-134.

    Cited by:

    1. Massimiliano Mazzanti & Giovanni Marin & Susanna Mancinelli & Francesco Nicolli, 2015. "Carbon dioxide reducing environmental innovations, sector upstream/downstream integration and policy: evidence from the EU," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(4), pages 709-735, November.
    2. Jeroen Bergh, 2007. "Evolutionary thinking in environmental economics," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 521-549, October.
    3. M.A.B. Siddique & M.A. Quaddus, 2013. "Sustainable development planning and DSS tools: what’s next?," Chapters, in: M. A. Quaddus & M. A.B. Siddique (ed.), Handbook of Sustainable Development Planning, chapter 15, pages 359-380, Edward Elgar Publishing.
    4. Qing Pei & David D Zhang & Guodong Li & Harry F Lee, 2015. "Climate Change and the Macroeconomic Structure in Pre-Industrial Europe: New Evidence from Wavelet Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    5. Konnola, Totti & Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Prospective voluntary agreements for escaping techno-institutional lock-in," Ecological Economics, Elsevier, vol. 57(2), pages 239-252, May.
    6. Rammel, Christian & van den Bergh, Jeroen C. J. M., 2003. "Evolutionary policies for sustainable development: adaptive flexibility and risk minimising," Ecological Economics, Elsevier, vol. 47(2-3), pages 121-133, December.
    7. Jeroen C.J.M. van den Bergh, 2007. "Sustainable Development in Ecological Economics," Chapters, in: Giles Atkinson & Simon Dietz (ed.), Handbook of Sustainable Development, chapter 4, Edward Elgar Publishing.
    8. Gunes UNAL & Sakir Basaran & Selcuk KENDIRLI, 2014. "Sustainable Environment and in the Context of Environment Economy Necessary and an Analyze," International Conference on Economic Sciences and Business Administration, Spiru Haret University, vol. 1(1), pages 318-326, December.
    9. Shantha Indrajith Hikkaduwa Liyanage & Fulu Godfrey Netswera, 2022. "Greening Universities with Mode 3 and Quintuple Helix Model of Innovation–Production of Knowledge and Innovation in Knowledge-Based Economy, Botswana," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1126-1156, June.
    10. Agnieszka Stanowicka, 2021. "The role of universities in urban development on the example of Polish cities," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 9(1), pages 680-691, September.
    11. Pierre Le Masne, 2012. "Sustainable Development: The Teachings of the Physiocrats and the Classics," Chapters, in: Blandine Laperche & Nadine Levratto & Dimitri Uzunidis (ed.), Crisis, Innovation and Sustainable Development, chapter 7, Edward Elgar Publishing.
    12. Simone Borghesi & Giulio Cainelli & Massimiliano Mazzanti, 2012. "Brown Sunsets and Green Dawns in the Industrial Sector: Environmental Innovations, Firm Behavior and the European Emission Trading," Working Papers 2012.03, Fondazione Eni Enrico Mattei.
    13. Seeme Mallick & Naghmana Ghani, 2005. "A Review of the Relationship between Poverty, Population Growth, and Environment," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 44(4), pages 597-614.
    14. Joan Hoffman, 2008. "Census Peek: Collaboration in the New York City Catskill/Delaware Watershed: Case Study 1990–2000," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(2), pages 129-156, April.
    15. Jeroen C.J.M. van den Bergh, 2004. "Evolutionary Analysis of the Relationship between Economic Growth, Environmental Quality and Resource Scarcity," Tinbergen Institute Discussion Papers 04-048/3, Tinbergen Institute.
    16. Luciano Ferreira Silva & Arnoldo José Hoyos Guevara & Ernesto D. R. Santibanez Gonzalez & Paulo Sergio Gonçalves Oliveira, 2019. "Evolution toward environment sustainable behavior: search for survival in the plastic industry in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1291-1320, June.
    17. M. Isabel Sánchez-Hernández & Juan José Maldonado-Briegas, 2023. "The EntreComp Framework in Practice: A Case Study Linking Employability, Entrepreneurship, and Regional Development," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    18. Carrillo-Hermosilla, Javier, 2006. "A policy approach to the environmental impacts of technological lock-in," Ecological Economics, Elsevier, vol. 58(4), pages 717-742, July.
    19. Ekaterina Yatskovskaya & Jagjit Singh Srai & Mukesh Kumar, 2018. "Integrated Supply Network Maturity Model: Water Scarcity Perspective," Sustainability, MDPI, vol. 10(3), pages 1-26, March.
    20. Sedat KUSGOZOGLU & M. Sakir BASARAN & Selcuk KENDIRLI, 2014. "Expansion for Who, Markets or The Poor?," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 3(4), pages 59-68, December.
    21. Gunes UNAL & Sakir Basaran & Selcuk KENDIRLI, 2014. "Sustainable Environment and in the Context of Environment Economy Necessary and an Analyse," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 3(4), pages 5-14, December.
    22. Giulio Cainelli & Massimiliano Mazzanti & Simone Borghesi, 2012. "The European Emission Trading Scheme and environmental innovation diffusion: Empirical analyses using Italian CIS data," Working Papers 201201, University of Ferrara, Department of Economics.
    23. M. A. Quaddus & M. A.B. Siddique (ed.), 2013. "Handbook of Sustainable Development Planning," Books, Edward Elgar Publishing, number 14372.
    24. Totti Könnölä & Gregory C. Unruh & Javier Carrillo- Hermosilla, 2005. "IE WP 23/04 Prospective Voluntary Agreements to Escape Carbon Lock-in," Others 0509005, University Library of Munich, Germany.

Chapters

  1. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.

    Cited by:

    1. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    2. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.

  2. Peter Mulder & Raymond J.G.M. Florax & Henri L.F. de Groot, 2011. "A Spatial Perspective on Global Energy Productivity Trends," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 2, Edward Elgar Publishing.

    Cited by:

    1. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.

Books

  1. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), 2011. "Improving Energy Efficiency through Technology," Books, Edward Elgar Publishing, number 3830.

    Cited by:

    1. Taran Fæhn & Elisabeth Thuestad Isaksen, 2014. "Diffusion of climate technologies in the presence of commitment problems," Discussion Papers 768, Statistics Norway, Research Department.
    2. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    3. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    4. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2014. "Policy Inducement Effects in Energy Efficiency Technologies. An Empirical Analysis on the Residential Sector," SEEDS Working Papers 1914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    5. Ruijs, Arjan & Vollebergh, Herman, 2013. "Lessons from 15 Years of Experience with the Dutch Tax Allowance for Energy Investments for Firms," Energy: Resources and Markets 151533, Fondazione Eni Enrico Mattei (FEEM).
    6. Mark J. Koetse & Henri L.F. de Groot & Raymond J.G.M. Florax, 2011. "A Meta-Regression Analysis of the Investment–Uncertainty Relationship," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 7, Edward Elgar Publishing.
    7. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    8. Marin, Giovanni & Palma, Alessandro, 2016. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Energy: Resources and Markets 230687, Fondazione Eni Enrico Mattei (FEEM).
    9. Kornelis Blok & Suzanne Joosen & Mirjam Harmelink, 2011. "Effectiveness of Energy Policies in the Service Sector," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 10, Edward Elgar Publishing.
    10. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    11. Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Monitoring Energy Use and Energy Efficiency in the Dutch Service Sector," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 5, Edward Elgar Publishing.
    12. Willem J.H. van Groenendaal, 2011. "Energy Model and Policy Advice: The Effect of Model Choice," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 11, Edward Elgar Publishing.
    13. Mark J. Koetse & Raymond J.G.M. Florax & Henri L.F. de Groot, 2005. "Correcting for Primary Study Misspecifications in Meta-Analysis," Tinbergen Institute Discussion Papers 05-029/3, Tinbergen Institute, revised 31 Jan 2013.
    14. Peter Mulder & Raymond J.G.M. Florax & Henri L.F. de Groot, 2011. "A Spatial Perspective on Global Energy Productivity Trends," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 2, Edward Elgar Publishing.
    15. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    16. Daan P. van Soest & Herman R.J. Vollebergh, 2011. "Energy Investment Behaviour: Firm Heterogeneity and Subsidy Design," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 9, Edward Elgar Publishing.
    17. Henri de Groot & Peter Mulder, 2011. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987–2005," CPB Discussion Paper 190, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
    19. Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Brita Bye & Taran Fæhn & Orvika Rosnes, 2015. "Residental energy efficiency and European carbon policies A CGE-analysis with bottom-up information on energy efficiency technologies," Discussion Papers 817, Statistics Norway, Research Department.
    21. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    22. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.
    23. Andrea Ramírez & Martin K. Patel & Kornelis Blok, 2011. "Using Physical Indicators to Monitor Energy Efficiency in Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 4, Edward Elgar Publishing.
    24. Liangfeng Zhu & Xueyi Zhu, 2019. "Energy policy, market environment and the economic benefits of enterprises: evidence from China’s petrochemical enterprises," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 113-127, January.
    25. Daan P. van Soest & Henri L.F. de Groot, 2011. "The Effects of Uncertainty on Investments: Analysing the Environmental Impact of Energy Market Liberalization," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 8, Edward Elgar Publishing.
    26. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.
    27. Taran Faehn and Elisabeth T. Isaksen, 2016. "Diffusion of Climate Technologies in the Presence of Commitment Problems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    28. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.

  2. Peter Mulder, 2005. "The Economics of Technology Diffusion and Energy Efficiency," Books, Edward Elgar Publishing, number 3434.

    Cited by:

    1. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    2. Gill, Tania & Punt, Cecilia, 2010. "The Potential Impact of Increased Irrigation Water Tariffs in South Africa," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96425, African Association of Agricultural Economists (AAAE).
    3. Min, Jihoon & Azevedo, Inês L. & Michalek, Jeremy & de Bruin, Wändi Bruine, 2014. "Labeling energy cost on light bulbs lowers implicit discount rates," Ecological Economics, Elsevier, vol. 97(C), pages 42-50.
    4. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    5. Henri de Groot & Peter Mulder, 2011. "Dutch Sectoral Energy Intensity Developments in International Perspective, 1987–2005," CPB Discussion Paper 190, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    7. Andrei, Mariana & Thollander, Patrik & Sannö, Anna, 2022. "Knowledge demands for energy management in manufacturing industry - A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    9. Peter Mulder & Henri L.F. de Groot, 2011. "Energy-Productivity Performance Across 14 OECD Countries: The Role of Energy-Extensive Sectors," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 3, Edward Elgar Publishing.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.