IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v101y2017icp537-549.html
   My bibliography  Save this article

The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800

Author

Listed:
  • Henriques, Sofia Teives
  • Borowiecki, Karol J.

Abstract

Using an extended Kaya decomposition, we identify the drivers of long-run CO2 emissions since 1800 for Denmark, France, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, the UK, the United States, Canada and Japan. By considering biomass and carbon-free energy sources along with fossil fuels, we are able to shed light on the effects of past and present energy transitions on CO2 emissions. We find that at low levels of income per capita, fuel switching from biomass to fossil fuels is the main contributing factor to emissions growth. As income levels increase, scale effects, especially income effects, become dominant. Technological change proves to be the main offsetting factor in the long run. Particularly in the last decades, technological change and fuel switching have become important contributors to the decrease in emissions in Europe. Our results also contrast the differentiated historical paths of CO2 emissions taken by these countries.

Suggested Citation

  • Henriques, Sofia Teives & Borowiecki, Karol J., 2017. "The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800," Energy Policy, Elsevier, vol. 101(C), pages 537-549.
  • Handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:537-549
    DOI: 10.1016/j.enpol.2016.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516305985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sofia Teives Henriques & Paul Sharp, 2016. "The Danish agricultural revolution in an energy perspective: a case of development with few domestic energy sources," Economic History Review, Economic History Society, vol. 69(3), pages 844-869, August.
    2. Mundaca T., Luis & Markandya, Anil & Nørgaard, Jørgen, 2013. "Walking away from a low-carbon economy? Recent and historical trends using a regional decomposition analysis," Energy Policy, Elsevier, vol. 61(C), pages 1471-1480.
    3. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
    4. Gales, Ben & Kander, Astrid & Malanima, Paolo & Rubio, Mar, 2007. "North versus South: Energy transition and energy intensity in Europe over 200 years," European Review of Economic History, Cambridge University Press, vol. 11(2), pages 219-253, August.
    5. Cowan, Wendy N. & Chang, Tsangyao & Inglesi-Lotz, Roula & Gupta, Rangan, 2014. "The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries," Energy Policy, Elsevier, vol. 66(C), pages 359-368.
    6. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
    7. Kuskova, Petra & Gingrich, Simone & Krausmann, Fridolin, 2008. "Long term changes in social metabolism and land use in Czechoslovakia, 1830-2000: An energy transition under changing political regimes," Ecological Economics, Elsevier, vol. 68(1-2), pages 394-407, December.
    8. Lindmark, Magnus, 2004. "Patterns of historical CO2 intensity transitions among high and low-income countries," Explorations in Economic History, Elsevier, vol. 41(4), pages 426-447, October.
    9. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    10. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    11. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    12. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    13. Marcotullio, Peter J. & Schulz, Niels B., 2007. "Comparison of Energy Transitions in the United States and Developing and Industrializing Economies," World Development, Elsevier, vol. 35(10), pages 1650-1683, October.
    14. Krausmann, Fridolin & Schandl, Heinz & Sieferle, Rolf Peter, 2008. "Socio-ecological regime transitions in Austria and the United Kingdom," Ecological Economics, Elsevier, vol. 65(1), pages 187-201, March.
    15. Astrid Kander & Paolo Malanima & Paul Warde, 2013. "Power to the People: Energy in Europe over the Last Five Centuries," Economics Books, Princeton University Press, edition 1, number 10138.
    16. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    17. Astrid Kander, 2008. "Is it simply getting worse? Agriculture and Swedish greenhouse gas emissions over 200 years1," Economic History Review, Economic History Society, vol. 61(4), pages 773-797, November.
    18. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    19. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    20. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    21. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    22. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    23. Henriques, Sofia Teives & Kander, Astrid, 2010. "The modest environmental relief resulting from the transition to a service economy," Ecological Economics, Elsevier, vol. 70(2), pages 271-282, December.
    24. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    25. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    26. M. d. MAR RUBIO & CÉSAR YÁÑEZ & MAURICIO FOLCHI & ALBERT CARRERAS, 2010. "Energy as an indicator of modernization in Latin America, 1890–1925," Economic History Review, Economic History Society, vol. 63(3), pages 769-804, August.
    27. Andreoni, Valeria & Galmarini, Stefano, 2016. "Drivers in CO2 emissions variation: A decomposition analysis for 33 world countries," Energy, Elsevier, vol. 103(C), pages 27-37.
    28. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    29. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    30. Steward, F. R., 1978. "Energy consumption in Canada since confederation," Energy Policy, Elsevier, vol. 6(3), pages 239-245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, Sofia Teives & Borowiecki, Karol Jan, 2014. "The Drivers of Long-run CO2 Emissions: A Global Perspective since 1800," Discussion Papers on Economics 13/2014, University of Southern Denmark, Department of Economics.
    2. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    3. Kander, Astrid & Warde, Paul & Teives Henriques, Sofia & Nielsen, Hana & Kulionis, Viktoras & Hagen, Sven, 2017. "International Trade and Energy Intensity During European Industrialization, 1870–1935," Ecological Economics, Elsevier, vol. 139(C), pages 33-44.
    4. Zsuzsanna Csereklyei, M. d. Mar Rubio-Varas, and David I. Stern, 2016. "Energy and Economic Growth: The Stylized Facts," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Agovino, Massimiliano & Bartoletto, Silvana & Garofalo, Antonio, 2019. "Modelling the relationship between energy intensity and GDP for European countries: An historical perspective (1800–2000)," Energy Economics, Elsevier, vol. 82(C), pages 114-134.
    6. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    7. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    8. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    9. Hana Nielsen, 2016. "East versus West: Energy transition and energy intensity in coal-rich Europe, 1830-2000," Working Papers 16024, Economic History Society.
    10. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    11. Hu, Junfeng & Kahrl, Fredrich & Yan, Qingyou & Wang, Xiaoya, 2012. "The impact of China's differential electricity pricing policy on power sector CO2 emissions," Energy Policy, Elsevier, vol. 45(C), pages 412-419.
    12. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    13. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    14. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    15. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    16. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    17. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    18. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    19. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    20. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:101:y:2017:i:c:p:537-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.